首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A humidity blocker approach to overcoming the humidity interference with cationic photopolymerization is proposed and validated. Environmental humidity is one of the major interfering factors in cationic photopolymerization, and cationic photopolymerization is found to be inhibited by high humidity. When curing cycloaliphatic epoxide based cationic UV curable materials flexibilized by various reactive diluents under different humidity conditions, it was found that the more hydrophobic materials exhibited higher monomer conversion under higher humidity. To obtain cationic UV curable materials that are less influenced by humidity, a humidity blocker approach was proposed and monomer conversion of materials containing both hydroxy‐functional reactive diluents and epoxy‐siloxane were examined using real‐time FTIR. The hydroxy‐functional reactive diluents act as an internal hydroxyl source that enhances monomer conversion through chain transfer mechanism, and the hydrophobic epoxy‐siloxane acts as a humidity blocker, mitigating the inhibiting effects of humidity. Cationic UV curable materials with an optimized combination of these two components exhibited higher and more consistent monomer conversion under a range humidity conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4344–4351, 2008  相似文献   

2.
The results of investigations of the effect of solid petroleum resins, epoxide oligomers, and type of curing agent upon the properties of varnishes and coatings based on chlorosulfonated polyethylene are given. It is shown that the use of cycloaliphatic isocyanates and amine-containing organic silicon compounds allows one to obtain coatings with a complex of high processing and operating characteristics.  相似文献   

3.
Inorganic–organic hybrid materials were prepared with a cycloaliphatic epoxide adduct of linseed oil with tetraethylorthosilicate (TEOS) oligomers via a cationic UV‐curing process. The TEOS oligomers were prepared in the presence of water and ethanol with hydrochloric acid as a catalyst. The TEOS oligomers were characterized with 1H and 29Si NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Hybrid films were cured, and the dynamic mechanical and thermal properties of the hybrid films were evaluated as a function of the TEOS oligomer content. The morphology of the hybrid films was examined with atomic force microscopy, transmission electron microscopy, and small‐angle light scattering. The microscopy and dynamic mechanical data indicated that the hybrid films were heterogeneous materials with various inorganic particle sizes dispersed within the organic matrix. In addition, 29Si solid‐state NMR spectroscopy was used to investigate the coupling between the silicate region and organic regions. A schematic model is proposed to address structural features of hybrid materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1607–1623, 2005  相似文献   

4.
To meet the need for reworkable epoxy resins, a series of cycloaliphatic diepoxides containing thermally cleavable carbamate linkages were synthesized and characterized. These materials were shown to undergo curing reactions with cyclic anhydride in a similar fashion as a commercial cycloaliphatic epoxide, except that the carbamate group within the diepoxides can act as the internal catalyst. Furthermore, cured samples of the formulations from these diepoxides started to decompose at lower temperatures, i.e., between 200–300°C as compared with 350°C for the cured sample of the commercial cycloaliphatic epoxide, which showed their potential to be used as reworkable underfill encapsulants in the electronic packaging area. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2991–3001, 1999  相似文献   

5.
A novel imide ring and siloxane-containing cycloaliphatic epoxy compound 1,3-bis[3-(4,5-epoxy-1,2,3,6-tetrahydrophthalimido)propyl]tetramethyldisiloxane (BISE) was synthesized from 1,3-bis(3-aminopropyl)tetramethyldisiloxane and tetrahydrophthalic anhydride by a two-step procedure, which was then thermally cured with alicyclic anhydrides hexahydro-4-methylphthalic anhydride (HMPA) and hexahydrophthalic anhydride (HHPA), respectively. As comparison, a commercial available cycloaliphatic epoxy 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate (ERL-4221) cured with the same curing agents was also investigated. The experimental results indicated that the BISE gave the exothermic starting temperature higher than ERL-4221 no mater what kind of curing agents applied, implying the reactivity of the former is lower than the latter. The fully cured BISE epoxy resins have good thermal stability with thermal decomposition temperature at 5% weight loss of 346-348 °C in nitrogen, although they gave the relatively low glass transition temperatures due to the presence of flexible propyl and siloxane segments in the epoxy backbone. The BISE epoxy resins exhibited good mechanical and dielectric properties as well as low water absorption. The improved dielectric properties and the reduced water absorption of BISE epoxy resins are attributed to the low polarity as well as the hydrophobic nature of siloxane segment in the epoxy backbone.  相似文献   

6.
In the present study, maleimide‐modified epoxide resin containing UV‐curable hybrid coating materials were prepared and coated on polycarbonate substrates in order to improve their surface properties. UV‐curable, bismaleimide‐modified aliphatic epoxy resin was prepared from N‐(p‐carboxyphenyl) maleimide (p‐CPMI) and cycloaliphatic epoxy (Cyracure‐6107) resin. The structure of the bismaleimide modified aliphatic epoxy resin was analyzed by FTIR and the characteristic absorption band for maleimide ring was clearly observed at 3100 cm?1. Silica sol was prepared from tetraethylorthosilicate (TEOS) and methacryloxy propyl trimethoxysilane (MAPTMS) by sol–gel method. The coating formulations with different compositions were prepared from UV‐curable bismaleimide‐based epoxy oligomer and sol–gel mixture. The molecular structure of the hybrid coating material was analyzed by 29Si‐CP/MAS NMR spectroscopy techniques. In the 29Si CP/MAS NMR spectrum of the hybrid coating, mainly two kinds of signals were observed at ?68 and ?110 ppm that correspond to T3 and Q4 peaks, respectively. This result shows that a fully condensed structure was obtained. The thermal and morphological properties of these coatings materials were investigated by using TGA and SEM techniques. Hardness and abrasion resistance properties of coating materials were examined and both were found to increase with sol–gel precursor content of the coating. The photopolymerization kinetics was investigated by using RT‐IR. 70% conversion was attained with the addition of 15 wt% of BMI resin into the acrylate‐based coating formulation. It was found that the UV‐curable organic–inorganic hybrid coatings improved the surface properties of polycarbonate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Epoxy-silica based hybrid nanocomposite coatings have been developed with different organicinorganic contents by sol–gel process. Various ratios of ceria and zirconia colloidal dispersions as inorganic nanoparticles are uniformly distributed in the hybrid sol. The hybrid sols are prepared by hydrolysis and condensation of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) in acidic solution using bisphenol A (BPA) and 1-methyl-imidazol (MI). A thin layer of each sol is coated on a micro-glass slide and 1050 aluminum alloy as substrates. The effect of alkoxysilane precursors (i.e. TEOS and GPTMS) and inorganic to organic molar ratio are investigated. Nanoindentation and dynamic mechanical analysis (DMA) performed to characterize the mechanical properties of the coatings in nanorange scale. It is revealed that all hybrid nanocomposite coatings had appropriate flexibility and strong interfacial interaction with the aluminum alloy substrate. It is proposed that the ceria and zirconia nanoparticles can be bonded to the surrounding of siloxane ring which can be induced high restriction in polymeric chain mobility in dynamic mechanical analysis. Nanoindentation tests showed that by increasing the inorganic phase in the nanocomposite, both elastic modulus and hardness increase, especially they are very intense in the higher levels of inorganic content.  相似文献   

8.
Novel silicon-containing amine curing agents for epoxy oligomers were synthesized by the interaction of diols of variable structure with aminopropyltriethoxysilane. The development of these curing agents yields a significant reduction in the polymer glass point, an increase in the degree of conversion of epoxide groups in the course of curing, and a significant improvement in the chemical stability and hydrophobicity of epoxy amine coatings, as well as their physicomechanical properties.  相似文献   

9.
Novel yellow and blue emissive dyes have been synthesized using 2,5-diamino-3,6-dicyanopyrazine and various alkoxysilanes and they are covalently bridged to cycloaliphatic epoxy functional oligosiloxane via non-hydrolytic sol–gel reaction. Dye-bridged hybrid materials (DBH) are fabricated by thermal curing the dye-bridged oligosiloxane. Structure and formation of dyes and siloxane network is studied using analysis method. Four components of red, yellow, green and blue emitting DBH cover entire visible range and white luminescence with high color rendering index is realized by controlling their combinations. We have ensured superior thermal stability DBH at 120 °C for 200 h caused by covalently bridged structure and robust siloxane matrix.  相似文献   

10.
Anti-reflective and electromagnetic shielding double-layered coatings were developed for cathode ray tubes (CRTs) by wet chemical process. An outer SiO2 layer is formed over a porous inner tin-doped indium oxide (ITO) particle layer. ITO particles used in the inner layer lower the sheet resistance below 103ohm/sq. and an electromagnetic shielding property is attained. To improve the abrasion wear resistance of the film, the structure of the film and hydrolysis-polymerization condition of tetraethoxy-silane (TEOS) are estimated. An outer SiO2 layer component penetrates into the inner layer and adheres to the glass surface. As the extent of hydrolysis of TEOS proceeds and the molecular weight of hydrolyzed TEOS becomes small, the abrasion wear resistance of the film enhances. The relation between the curing condition of the film and surface resistance of the film is investigated. The surface resistance of the film lowers by curing the film in reductive atmosphere. The transmittance of the film in the near-infrared region shows that the lowering of surface resistance of the film is caused by the increase of carrier concentration of ITO particles. The double layered coatings are successfully applied to the panel glass for CRTs on an industrial-scale.  相似文献   

11.
A new efficient and straightforward method to convert amines into siloxane‐thiol hybrid molecules was developed. The method relies on the nucleophilic addition of amines to a cyclic dithiocarbonate having siloxane moiety (DTC‐Si), and the successive ring‐opening reaction of the dithiocarbonate moiety to give the corresponding acyclic thiourethane having a thiol moiety. Based on this method, amine‐terminated poly(propylene glycol) was successfully transformed into the corresponding polyether having thiol‐terminals and siloxane groups. In the presence of moisture, the alkoxysilyl moiety underwent condensation reaction to make the polyether cured into a transparent resin having solvent‐resistance. Addition of bisphenol A diglycidyl ether (Bis A‐DGE) to the curing process resulted in two simultaneous reactions, i.e., (1) condensation of siloxane part and (2) addition reaction of the thiol terminal and the epoxide group. When this curing process was carried out on a glass surface, the siloxane part reacted with silanol group on the surface, forming a coating layer having excellent mechanical toughness graded as maximum 7H by pencil toughness test (JIS‐K5400). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5119–5126, 2005  相似文献   

12.
Atomic force microscopy (AFM) was combined with surface analytical techniques to investigate the rarely addressed issue of the effect of seawater on the surface properties of a selected fouling-release coating, silicon elastomer RTV11 (trademark of General Electric). The exposure of the RTV11 surface to seawater resulted in a modification of its morphology and mechanical properties, as confirmed by AFM and scanning electron microscopy (SEM). Surface modification was dependent on sample preparation and curing process, namely, curing agent concentration and relative humidity during curing. The RTV11 surface remained largely unaltered for samples cured under 100% relative humidity. SEM and X-ray photoelectron spectroscopy studies confirmed that the modified surface of RTV11 had the same elemental composition as the unexposed surface of the elastomer and showed excess Ca. However, the modified surface deformed plastically under load and was stiffer than the original surface. No major change was found on surfaces exposed to nanopure water during similar times of exposure as in seawater, regardless of curing conditions. The rate of increase in the aggregate formation in seawater can be described by an exponential function, with a decay constant of approximately 4.99 x 10(-)(3) min(-)(1) and a pre-exponential factor of approximately 1.77 x 10(-)(2) microm/min.  相似文献   

13.
A variety of condensation network polymers have been prepared by the reaction between amine, episulfide, and epoxide monomers. The mechanical relaxations occurring in these systems have been examined using a torsion pendulum and the role of hydrogen bonding in the mechanism of the β relaxation is shown to be insignificant. The chemical reaction between amine and episulfide groups has been investigated by IR spectroscopy and is shown to parallel the reaction between amine and epoxide groups. However, steric and electronic factors are suggested to decrease the extent of reaction when aromatic amines are involved. In the case of networks prepared from blends of episulfide and epoxide monomers, measurements of the gel time, together with the mechanical behavior around the glass transition, indicate that either interpenetrating or two-phase networks are formed. This is postulated to be a consequence of the high reactivity of the episulfide ring compared to the epoxide ring. The blending of small amounts of episulfide monomer with the epoxide monomer prior to curing may provide an effective method for lowering gel times without reducing the crosslink density and its dependent physical properties.  相似文献   

14.
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006  相似文献   

15.
A mixture of triethoxysilanefunctionalized poly(ethylene glycol), f-PEG, and tetraethoxysilane, TEOS, was used as precursors in the preparation of continuous hybrid f-PEG-siloxane sol–gel derived fibers. The fibers were spun by extrusion through a spinneret. The thus prepared fibers had a diameter of 20–50 m. 29Si-CPMAS NMR measurements confirmed that the functionalized PEG is incorporated into the siloxane network through covalent bonds. The hybrid fiber elasticity was much higher than that of fibers spun from sols with TEOS as the only source for silica. However, the f-PEG chain length plays a crucial role for the spinnability of the sol, since, as a result of bridging flocculation, macroscopic phase separation occurred readily with increasing chain length of the f-PEG. The fibers were shown to be effective substrates for the nucleation and growth of bone-like hydroxyapatite.  相似文献   

16.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

17.
Dual-cure formulations have been developed in order to broaden the range of applications of UV-radiation curing and achieve a sufficient cure of the non-illuminated areas of protective coatings, like the shadow areas of three-dimensional substrates or the deep-lying layers of thick pigmented coatings. In complement to the conventional acrylic photopolymerization, such systems involve a polyaddition reaction between isocyanate and hydroxyl functions upon heating, thus imparting satisfying mechanical properties to the coatings, even in the non-irradiated areas. For a quantitative study of the two curing reactions, infrared spectroscopy was chosen because it allows one to monitor accurately the chemical modifications induced in thin films by heat or light. This technique proved particularly useful to follow the polyaddition reaction through the decay of the characteristic IR band of the isocyanate group at 2271 cm−1. Several factors were shown to affect the reaction rate, in particular the chemical structure of the various functionalized compounds, the moisture content in the atmosphere, the curing temperature and the presence of amino catalysts. The viscoelastic properties of the resulting material have been evaluated by dynamic mechanical analysis and shown to be highly dependent on the curing conditions and the type of polymer network formed. For coatings which remain too soft in the dark areas, a thermal initiator was added to promote some further polymerization of the acrylate monomers.  相似文献   

18.
The novel cycloaliphatic epoxide 3,4‐epoxycyclohexylmethyl‐2′,3′‐epoxycyclohexyl ether ( II ) containing an unsymmetrical epoxycyclohexyl moiety linked via an ether bond, and its precursor 3‐cyclohexene‐1‐methyl‐2′‐cyclohexene ether ( I ) were synthesized. Their structure was confirmed by means of elemental analysis, FT‐IR and 1H NMR spectroscopy. Compared with commercial epoxide ERL‐4221, the newly synthesized epoxide II shows a higher epoxy value (0.85 eq/g) and lower viscosity (86 mpa·s/25°C). The cured product, based on epoxide II and curing agent hexahydro‐4‐methylphthalic anhydride (HMPA), showed higher glass transition temperature (162°C), higher storage modulus at the glass transition region (2.95 GPa), higher crosslinking density (1.60×10–3 mol/cm3) and a lower coefficient of thermal expansion (6.22×10–5/°C).  相似文献   

19.
Zirconia (ZrO 2) nanocrystals, synthesized from zirconium(IV) isopropoxide isopropanol complex and benzyl alcohol, were dispersed and functionalized in organic solvents using three kinds of bifunctional silane coupling agents (SCAs), 3-glycidoxypropyltrimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES), and 3-isocyanatopropyltriethoxysilane (IPTES). Completely transparent ZrO 2 dispersions were achieved in tetrahydrofuran (THF) with all three SCAs, in pyridine and toluene with APTES and IPTES, and in N, N-dimethylformamide with IPTES. Dynamic laser scattering (DLS) measurements and high-resolution transmission electron microscopical (HRTEM) observation indicated that the ZrO 2 nanocrystals are dispersed on a primary particle size level. Fourier transform infrared spectroscopy, solid-state (13)C- and (29)Si NMR spectroscopy, and thermogravimetric analysis demonstrated that all three SCAs are chemically attached to the surface of the ZrO 2 nanoparticles, however, in different bonding modes. Except for GPTMS/ZrO 2/THF dispersion and IPTES/ZrO 2/pyridine dispersion, all other transparent dispersions have poor long-term stability. The increasing polarity, due to high amount of APTES attached and high hydrolysis and condensation degree of the bonded APTES, and the aggregation, due to interparticle coupling via the bonded triethoxysilyl group, are the causes of the poor long-term stability for the ZrO 2 dispersions with APTES and IPTES, respectively. Nevertheless, the APTES-functionalized ZrO 2 precipitates can be deagglomerated in water to get a stable and transparent aqueous ZrO 2 dispersion via addition of a little hydrochloric acid.  相似文献   

20.
Two types of the organic-silica hybrid networks were prepared and their formation and structure were studied in dependence on reaction conditions. The silica phase was formed by the sol-gel process from tetraethoxysilane (TEOS) or alkoxysilane endcapped prepolymers. The organic phase was composed of linear poly(oxypropylene) chain or the epoxide network arising by curing the diglycidyl ether of Bisphenol A (DGEBA) with poly(oxypropylene)diamine. Fast development of the structure during polymerization was followed by the in-situ small-angle X-ray scattering measurement. One- and two-stage polymerization procedures result in formation of heterogeneous but optically transparent nanocomposites with different structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号