首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out under pulsed microwave irradiation (PMI) at 69 °C with N,N‐dimethylformamide as a solvent and with azobisisobutyronitrile (AIBN)/CuBr2/tetramethylethylenediamine as an initiation system. PMI resulted in a significant increase in the polymerization rate of RATRP. A 10.5% conversion for a polymer with a number‐average molecular weight of 34,500 and a polydispersity index of 1.23 was obtained under PMI with a mean power of 4.5 W in only 52 min, but 103 min was needed under a conventional heating process (CH) to reach a 8.3% conversion under identical conditions. At different [MMA]0/[AIBN]0 molar ratios, the apparent rate constant of polymerization under PMI was 1.5–2.3 times larger than that under CH. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3823–3834, 2002  相似文献   

2.
张凯  黄春保  沈慧芳  陈焕钦 《应用化学》2010,27(10):1144-1148
采用乳液聚合法将甲基丙烯酸甲酯(MMA)接枝到氯丁胶乳上,红外光谱和核磁共振氢谱证实了接枝产物的生成。 研究了反应温度、乳化剂浓度、引发剂浓度和单体浓度对表观聚合速率的影响。 结果表明,当反应温度为50 ℃,引发剂叔丁基过氧化氢 四乙烯五胺(t-BHP/TEPA)用量为氯丁胶乳干重的0.5%,单体/聚合物质量比m(M)∶m(P)=3∶5,乳化剂十二烷基连苯醚二磺酸钠(DSB)用量为单体总质量1%时,单体转化率和接枝效率分别为99.1%和54.9%。 聚合反应动力学关系式为:Rp=Kc(E)0.15c(I)0.30c(MMA)1.41,式中,K为常数,在40~55 ℃范围内,聚合反应的表观活化能Ea=60.2 kJ/mol。 接枝聚合基本符合自由基反应机理。  相似文献   

3.
The first single-mode microwave-assisted nitroxide-mediated radical polymerizations (NMRP) of styrene in bulk were successfully performed. The results showed that the polymerization proceeded in a controlled way. The power of microwave irradiation has considerable effect on the polymerization rate. The polymerization rates under appropriate power of microwave irradiation were faster than that under conventional heating (CH) at the same polymerization temperature. The living nature of the polymer was proved by successful chain extension polymerization and 1H NMR spectrum analysis.  相似文献   

4.
Polymerization of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) complex of methyl methacrylate (MMA) (MMA/HP‐β‐CD) was carried out under UV irradiation in aqueous solution with Irgacure 2959 (4‐(2‐hydroxyethoxy)phenyl‐(2‐hydroxy‐2‐propyl)ketone) as a photoinitiator at room temperature. The effects of some principal factors, including UV irradiation intensity, initiator concentration, and the ratio of HP‐β‐CD to MMA, on the polymerization were investigated in detail. Compared to the corresponding thermal polymerization, photo‐induced polymerization of the MMA/HP‐β‐CD complex could be accomplished at a higher speed; the polymerization conversion in photo‐induced polymerization reached 94% within 30 min, while it was only 62% for the thermal polymerization of 16 hr at 70°C. The number‐average molecular weight (Mn) and polymerization conversion decreased with the increase in UV intensity and initiator concentration. The resulting PMMA precipitated spontaneously from the solution during polymerization in the absence of any precipitator. About 95 wt% of the HP‐β‐CD remained in the solution after polymerization and the reusability of the residual HP‐β‐CD was experimentally demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The polymerization of methyl methacrylate (MMA) initiated with a system of oxycellulose, CuCl2, and water was carried out. The conversion of MMA and the degree of polymerization of homopoly-MMA were larger than obtained with the initiator system of cellulose, CuCl2 and water, while the efficiency of grafting was almost the same. It was confirmed that the polymerization proceeds through a radical mechanism. The effects of amounts of cupric chloride, water, and MMA in the feed on the conversion were studied. The pH of the water phase showed a remarkable effect: maximum conversion was obtained at neutral pH. At 90°C, a ceiling temperature was observed. The overall activation energy was estimated to be 96.7 kJ/mole. The initiation mechanism is discussed.  相似文献   

6.
Structurally well-defined polymer--nanoparticle hybrids were prepared by modifying the surface of silica nanoparticles with initiators for atom transfer radical polymerization and by using these initiator-modified nanoparticles as macroinitiators. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polystyrene or poly(methyl methacrylate) layer. In both cases, linear kinetic plots, linear plots of molecular weight (M(n)) versus conversion, increases in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (M(w)/M(n)) for the grafted polymer samples were observed. Polymerizations of styrene from smaller (75-nm-diameter) silica nanoparticles exhibited good molecular weight control, while polymerizations of methyl methacrylate (MMA) from the same nanoparticles exhibited good molecular weight control only when a small amount of free initiator was added to the polymerization solution. The difference in polymerization behavior for styrene and MMA was ascribed to the facts that styrene undergoes thermal self-initiation while MMA does not and that termination processes involving freely diffusing chains are faster than those involving surface-bound chains. The polymerizations of both styrene and MMA from larger (300-nm-diameter) silica nanoparticles did not exhibit molecular weight control. This lack of control was ascribed to the very high initial monomer-to-initiator ratio in these polymerizations. Molecular weight control was induced by the addition of a small amount of free initiator to the polymerization but was not induced when 5--15 mol % of deactivator (Cu(II) complex) was added.  相似文献   

7.
The photo-living radical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate ( t BuS) as the photo-acid generator. The livingness of the polymerization was confirmed on the basis of linear increases in the ln([MMA]0/[MMA]t) vs. time and in the molecular weight vs. the conversion. The molecular weight distributions of the resulting polymers were around 1.45. The polymerization rate was dependent both on the t BuS/MTEMPO and MTEMPO/r-AMDV molar ratios. Furthermore, it was found that the polymerization had a photo-latency because the polymerization was retarded by the interruption of the irradiation; however, it was accelerated again by further irradiation without deactivation of the growing polymer chain ends.  相似文献   

8.
The block copolymer brushes grafted from hollow sphere surface via reverse iodine transfer polymerization (RITP) were investigated in this work. A sufficient amount of azo initiator was introduced onto hollow sphere surface firstly. Then the monomer methyl methacrylate (MMA) was polymerized via surface-initiated reverse iodine transfer polymerization (RITP) using azo group modified hollow sphere as initiator. The microstructure of the samples was characterized by FT-IR, (1)H NMR, respectively. Results indicated that the poly(methyl methacrylate) (PMMA) with end functionality of alkyl iodine group had grafted from hollow sphere surface. TEM observations showed that the average diameter of hollow core was central at 1.3-1.4 μm and the average wall thickness increased from 103 nm to 138 nm and 172 nm after grafting polymerization of MMA and Tb complex, respectively. The closely linear plots of molecular weight (M(n)) versus conversion, linear kinetic plots for the free polymer formed in solution and the ability to extend the chains by sequential addition of monomer indicated that the RITP was a controlled process with a "living" characteristic.  相似文献   

9.
The photoradical polymerization of methyl methacrylate (MMA) was performed in an acetonitrile solution at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. This solution polymerization showed a non-steady-state during the very early stage followed by a steady-state. The polymerization produced oligomers with several thousand molecular weights at a very low conversion under the non-steady-state. It was confirmed that the polymerization proceeded in accordance with a living mechanism under the steady-state based on the linear correlations for both the first-order time-conversion plots and the conversion–molecular weight plots. The molecular weight distributions of the polymers obtained in the steady-state were approximately 1.8. The block copolymerization with isopropyl methacrylate ( i PMA) demonstrated that the growing polymer chain ends of the MMA prepolymer were stabilized even at a high conversion and efficiently initiated the i PMA polymerization.  相似文献   

10.
The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.  相似文献   

11.
The synthesis and characterization of a photocleavable block copolymer containing an ortho‐nitrobenzyl (ONB) linker between poly(methyl methacrylate) and poly(d ‐lactide) blocks is presented here. The block copolymers were synthesized via atom transfer radical polymerization (ATRP) of MMA followed by ring‐opening polymerization (ROP) of d ‐Lactide and ROP of d ‐lactide followed by ATRP of MMA from a difunctional photoresponsive ONB initiator, respectively. The challenges and limitations during synthesis of the photocleavable block copolymers using the difunctional photoresponsive ONB initiator are discussed. The photocleavage of the copolymers occurs under mild conditions by simple irradiation with 302 nm wavelength UV light (Relative intensity at 7.6 cm: 1500 μW/cm2) for several hours. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4309–4316  相似文献   

12.
13C Nuclear magnetic resonance proved to be an advantageous tool to determine the stereoregularity of polystyrene polymers. The latter was achieved through the analysis of the signal of the quaternary carbon and that of the carbon-p in the aromatic ring too. Styrene was polymerized through microwaves and conventional heating activation using two different polymerization techniques: emulsion and bulk. Microwave activation was performed in a mono-modal type device under the following experimental conditions: various initiator concentrations, an average irradiation power of 50?W, temperature of 70°C, and using a batch reactor for emulsion and bulk experiments. The results obtained in these experiments were compared with those obtained by conventional heating activation polymerization under the same initiator concentration and temperature conditions. Microwave-activated reactions resulted in shorter reaction times and higher yields. The tacticity of the polymer samples was not significantly altered, which lead to the conclusion that, in this case, the stereoregularity of polystyrene was not influenced by microwave irradiation.  相似文献   

13.
Differential scanning calorimetry and EPR and IR spectroscopies were used to study the low-temperature postradiation polymerization of methyl methacrylate (MMA) sorbed on a microporous glass (SiO2). Sorbed MMA was found to exhibit an enhanced tendency to polymerize within a temperature range of 160–250 K. At a preliminary irradiation dose of 10 kGy, the degree of conversion of the monomer was 100%, with the fraction of homopolymer formed being within 18%. The radiation-chemical yield of radicals in the SiO2-MMA system at 77 K was estimated at G = 53–55 per 100 eV. The paramagnetic centers formed during the low-temperature (77 K) radiolysis of SiO2 and MMA were demonstrated to be of ionic and radical natures. The polymerization of sorbed MMA via the radical growth of polymer chains was largely initiated by ions. That the polymer synthesized forms a chemical bond with the support was demonstrated using IR spectroscopy.  相似文献   

14.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

15.
丁伟  王玲  于涛  曲广淼  高翔  李明 《应用化学》2013,30(4):398-402
在微波辐射下,以水为反应介质,2-氯丙酰胺为引发剂,氯化亚铜/2,2′-联吡啶为催化体系,自制的磺基甜菜碱两性离子功能单体3-(2-甲基丙烯酰氧乙基二甲胺基)丙磺酸盐(DMAPS)与丙烯酰胺(AM)单体进行原子转移自由基共聚合反应,得到磺基甜菜碱型两性离子聚合物P(AM-DMAPS)。 讨论了微波功率、反应时间、单体用量、引发剂用量、催化剂和配体用量等因素对聚合反应的影响,并与相应的热聚合法进行了对照。 结果表明,微波辐射功率240 W,反应时间为1250 s时,微波辐射下共聚合的表观速率常数(Kappp)为热聚合法4.5倍,此时AM与DMAPS在水介质中的最佳合成条件为:单体总浓度4 mol/L(其中功能性单体DMAPS在混合单体中所占摩尔分数为1.0%),引发剂浓度0.015 mol/L,催化剂浓度0.01 mol/L。 此时转化率为40.15%,Mn为46410。  相似文献   

16.
The novel photo-living radical polymerization of methyl methacrylate (MMA) was determined using 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) (AMDV) and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The polymerization provided a comparatively narrow molecular weight distribution in the range of 1.4–1.7. The resulting PMMA contained no BAI fragments in its structure and had the 1-cyano-1,3-dimethyl-3-methoxybutyl radical and MTEMPO at the 1:1 molar ratio. The experimental molecular weight was in close agreement with the theoretical one when the initiator efficiency was taken into consideration. The plots of ln([MMA]0/[MMA]) vs. time and the molecular weight of PMMA vs. the conversion and vs. the reciprocal of the initial concentration of AMDV showed linear correlations, indicating that the polymerization proceeded in accordance with a living mechanism. It was found that the polymerization had a photo-switching ability, because the polymerization was interrupted by turning off the irradiation, and then restarted by the irradiation again.  相似文献   

17.
Summary: Emulsion polymerization reactions were performed under microwave irradiation and conventional heating using anionic or cationic initiators and surfactants. Microwave irradiation promoted higher reaction rates for both initiators and surfactants, in comparison with the conventional heating. The effect of high power microwave irradiation was studied using a method of cycles of heating and cooling, where rapid polymerization reactions were obtained. In the reactions with anionic initiator and surfactant, a decrease in the particle diameters was observed with microwave heating, and even smaller particles were obtained using high power microwave irradiation. Moreover, the decrease in the particle size was acompanied by an increase in the polymer molecular weight. On the other hand, these effects were not observed for reactions with cationic initiator and surfactant.  相似文献   

18.
梁建国  韩丙勇 《化学学报》2006,64(7):701-704
采用苯氧铜/正丁基锂(PhOCu/n-BuLi)体系引发MMA聚合, 通过GPC, 1H NMR对聚合物进行了表征. 实验结果表明, 该体系聚合反应速度较快, 温度、引发体系组成是影响聚合物分子量及其分布、单体转化率、引发剂引发效率、聚合物的立构规整性的主要因素; -40 ℃时分子量分布比较窄, 但引发效率也比较低(大约15%). 低引发效率、宽分子量分布与引发剂的聚集状态有关. 分子量与单体浓度、引发剂浓度的关系说明, 该体系具有一定程度的活性聚合特点.  相似文献   

19.
The emulsion polymerization of methyl methacrylate (MMA) and styrene (St) were investigated with using polyamidoamine (PAMAM) dendrimer as seed, potassium persulfate as initiator and sodium dodecyl sulfate as emulsifier. The effects of 4.0GPAMAM dendrimer concentration, initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature on the monomer conversion and polymerization rate were investigated. At the same time, the influence of the generation of PAMAM dendrimer on latex particle size was studied also. The results showed that the monomer conversion and polymerization rate increased with increasing initiator concentration, emulsifier concentration, monomer concentration, and polymerization temperature. But polymerization rate increased firstly with an increase in the 4.0GPAMAM dendrimer from 0.03 g to 0.09 g and then decreased with further increase to 0.12 g. When the concentration of 4.0GPAMAM dendrimer less than 1.449 × 10?4 mol/L, the kinetic equation can be expressed by Rp∝[4.0GPAMAM]0.772[SDS]0.562[KPS]0.589[M]0.697, and the activation energy (Ea) of emulsion polymerization is 62.56kJ/mol. In additional, the copolymer latex particle size decreased and possessed monodispersity with increasing the generation of PAMAM dendrimer. According to FT-IR spectrum analysis, PAMAM dendrimer is successfully incorporated into the poly(PAMAM-St–MMA) latex particles.  相似文献   

20.
<正> 作为一种新的极性单体加聚方式的基团转移聚合(Group Transfer Polymerization,GTP),近年来发展很快。对不同引发体系和单体的基团转移聚合进行动力学研究,由此得到规律性的认识,明确聚合过程的影响因素,有利于聚合机理的完善。文献已报道了用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号