首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Serge Zhuiykov 《Ionics》2009,15(6):693-701
An alumina sensor using sub-micron RuO2 sensing electrode (SE) was fabricated and examined for potentiometric dissolved oxygen (DO) detection in water at a temperature range of 9–35 °C. The electromotive force (emf) response at these temperatures was linear to the logarithm of DO concentration in the range from 0.6 to 8.0 ppm (log[O2], −4.71 to −3.59). RuO2-SE displays a Nernstian slope of −41 mV per decade at pH 8.0. It was also found that the response/recovery time to DO changes were sluggish as the water temperature cools down. Response time T 90 to DO changes increased from 8 min at a temperature of 23 °C to about 30 min at a temperature of 9 °C. The proton conductivity of hydrous RuO2 appears to be due to the dissociative adsorption of water and the formation of acidic OH groups in Ru (III,IV) cluster ions. In strong alkaline solutions, the sensor’s emf exhibited a mixed potential of fast and slow electrochemical reactions involving DO, RuO4 2− and OH ions. The results also revealed that as pH of the solution increases to pH 10.0–13.0, the response/recovery rate becomes faster, stabilizing more or less quickly depending upon the solution alkalinity. Scanning electron microscopy, energy dispersive X-ray-analysis and impedance spectroscopy techniques were used to examine respectively the morphology, crystalline structure and electrochemical behaviour of sub-micron RuO2 oxides.  相似文献   

2.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

3.
M. Ganesan 《Ionics》2008,14(5):395-401
Chromium-substituted Li4Ti5O12 has been investigated as a negative electrode for future lithium batteries. It has been synthesized by a solid-state method followed by quenching leading to a micron-sized material. The minimum formation temperature of Li4Ti2.5Cr2.5O12 was found to be around 600 °C using thermogravimetric and differential thermal analysis. X-ray diffraction, scanning electron microscopy, cyclic voltammetry (CV), impedance spectroscopy, and charge–discharge cycling were used to evaluate the synthesized Li4Ti2.5Cr2.5O12. The particle size of the powder was around 2–4 μm. CV studies reveal a shift in the deintercalation potential by about 40 mV, i.e., from 1.54 V for Li4Ti5O12 to 1.5 V for Li4Ti2.5Cr2.5O12. High-rate cyclability was exhibited by Li4Ti2.5Cr2.5O12 (up to 5  C) compared to the parent compound. The conduction mechanism of the compound was examined in terms of the dielectric constant and dissipation factor. The relaxation time has been evaluated and was found to be 0.07 ms. The mobility was found to be 5.133 × 10−6 cm2 V−1 s−1.  相似文献   

4.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

5.
The oxygen adsorption-desorption properties of RBa2Cu3O7−δ (R = Gd, Er, Eu, Dy, Sm, Ho and Nd) and Y1−x LaxBa2Cu3O7−δ (x=0.1, 0.5 and 1.0) were investigated from room temperature to 950 °C by thermogravimetry (TG). The results show that all samples will release oxygen with the increasing of temperature and the released oxygen can be absorbed back into the sample when temperature decreases. However, dependent on the rare earth element, the amount of the released oxygen is different for these samples. Moreover, in the temperature increasing and decreasing circle the repetition of oxygen adsorption-desorption is also different.  相似文献   

6.
Multi-wall carbon nanotubes (MWNTs) have a great commercial potential as electron field emitters, but suffer from fundamental problems such as stability and brightness. By depositing the MWNTs with nano-sized ruthenium dioxide (RuO2) particles, a new high performance emitter has been developed. When compared to MWNTs, the MWNTs impregnated with 1–2 nm sized RuO2 have superior and more efficient electrical characteristics. MWNTs supported by a silicon substrate showed a reduction in the onset voltage from 5.4 to 4 V/μm after RuO2 impregnation. The long-term stability of the impregnated MWNTs is also demonstrated with only a 20% increase in applied voltage required after 700 h operation at 40 mA/cm2.  相似文献   

7.
BaCe0.7Ta0.1Y0.2O3− δ (BCTY) and BaCe0.8Y0.2O3− δ (BCY) were synthesized by solid-state reaction method at 1,300 °C for 20 h. After being exposed in 3% CO2 + 3% H2O + 94% N2 at 700 °C for 20 h, the BCTY exhibited adequate chemical stability against carbonations while BCY decomposed into BaCO3 and CeO2. The BCTY showed the similar thermal expansion behavior to BCY from room temperature to 1,000 °C in air. The BCTY displayed a conductivity of 0.007 S/cm at 700 °C in humid hydrogen, lower than that of BCY (0.009 S/cm). A fuel cell with 10-μm thick BCTY membrane prepared through an all-solid-state process exhibited 1.004 V for OCV, 330 mW/cm2 for maximum output at 700 °C, respectively. Short-term test shows that the fuel cell performance does not degrade after 20 h.  相似文献   

8.
Thin solid polymer electrolytes based on polyethylene oxide (PEO) and silver triflate (AgCF3SO3) dispersed with various concentrations of aluminum oxide (Al2O3) nanoparticles have been prepared by solution casting technique. These thin polymer films are found to have thickness of the order of 30 to 100 μm. The X-ray diffraction (XRD) patterns have indicated the amorphous nature of the polymer electrolyte. The differential scanning calorimeter (DSC) traces showed slight change in the glass transition temperature (T g) whereas the degree of crystallization (X c) decreases markedly due to the addition of alumina nanoparticles. Fourier transform infrared (FTIR) spectral analysis of all these samples has revealed the presence of absorption bands around 1,000 cm−1; thus indicating the complexation of silver ions with oxygen in PEO. Employing the Wagner’s polarization technique as the standard method, the total ionic transference number for the complexed polymer electrolyte was found to be approximately unity thereby revealing that the significant contribution to electrical conduction was due to ions only. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, December 7–9, 2006  相似文献   

9.
Solid-state nickel metal hydride cells were fabricated using plasticized alkaline solid polymer electrolytes (ASPE) prepared from polyvinyl alcohol (PVA), potassium hydroxide (KOH), alumina (α-Al2O3), and propylene carbonate (PC). The ASPE film with PVA/KOH/α-Al2O3/PC/H2O weight ratio of 1.00:0.67:0.09:2.64:1.32 and conductivity of (6.6 ± 1.7) × 10−4 S cm−1 was used in fabrication of the electrochemical cells. To investigate the electrochemical properties of the plasticized ASPE, cells with the configuration Mg2Ni/plasticized ASPE/Ni(OH)2 were fabricated. At the eighth cycle with a current drain of 0.1 mA and plateau voltage of ∼1.1 V, the discharge lasted for 14 h before the cell was considered to have failed. The failure mode of the cell was due to the formation of thin Mg(OH)2 insulating layers.  相似文献   

10.
A new method for the determination of trace mercury by solid substrate-room temperature phosphorimetry (SS-RTP) quenching method has been established. In glycine-HCl buffer solution, xylenol orange (XO) can react with Sn4+ to form the complex [Sn(XO)6]4+. [Sn(XO)6]4+ can interact with Fin (fluorescein anion) to form the ion associate [Sn(XO)6]4+·[(Fin)4], which can emit strong and stable room temperature phosphorescence (RTP) on polyamide membrane (PAM). Hg2+ can catalyze H2O2 oxidizing the ion association complex [Sn(XO)6]4+·[(Fin)4], which causes the RTP to quench. The ΔIp value is directly proportional to the concentration of Hg2+ in the range of 0.016–1.6 fg spot−1 (corresponding concentration: 0.040–4.0 pg ml−1, 0.40 μl spot−1), and the regression equation of working cure is ΔIp=10.03+83.15 m Hg2+ (fg spot−1), (r=0.9987, n=6) and the detection limit (LD) is 3.6 ag spot−1(corresponding concentration: 9.0×10–15 g ml−1, the sample volume: 0.4 μl). This simple, rapid, accurate method is of high selectivity and good repeatability, and it has been successfully applied to the determination of trace mercury in real samples. The reaction mechanism for catalyzing H2O2 oxidizing the ion association complex ([Sn(XO)6]4+·[(Fin)4]) SS-RTP quenching method to determine trace mercury is also discussed.  相似文献   

11.
This paper reports on the electrochemical properties and chemical stability of a recently developed Ca2+ and Sm3+-doped oxide ion conducting electrolyte, Ce0.85Ca0.05Sm0.1O1.9 (CCS), employed in an intermediate temperature solid oxide fuel cell (IT-SOFC) using conventional Sm0.5Sr0.5CoO3 (SSC) and La0.8Sr0.2MnO3 (LSM) cathodes in air at elevated temperatures. The materials were prepared by conventional solid-state reactions using their corresponding metal oxides and salts in the temperature range of 1,200–1,450 °C in air. Powder X-ray diffraction (PXRD) and impedance spectroscopy were employed for phase formation, chemical compatibility, and electrochemical characterization. PXRD studies on 1:1 weight ratio of heat-treated (1,000 °C for 3 days) mixtures of SSC or LSM and CCS revealed the presence of fluorite-type and perovskite-like phases. The area-specific resistance (ASR) value in air was lower for SSC cathodes (4.3–0.15 Ω cm2) compared to those of LSM (407–11 Ω cm2) over the investigated temperature range of 600–800 °C. As expected, a significant increase in ASR was observed in Ar as compared to air.  相似文献   

12.
ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based onab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ · mol−1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent, Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2− of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2− has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.  相似文献   

13.
(La0.5Sr0.5)CoO3 (LSCO) thin films have been fabricated on silicon substrate by the pulsed laser deposition method. The effects of substrate temperature and post-annealing condition on the structural and electrical properties are investigated. The samples grown above 650°C are fully crystalline with perovskite structure. The film deposited at 700°C has columnar growth with electrical resistivity of about 1.99×10−3 Ω cm. The amorphous films grown at 500°C were post-annealed at different conditions. The sample post-annealed at 700°C and 10−4 Pa has similar microstructure with the sample in situ grown at 700°C and 25 Pa. However, the electrical resistivity of the post-annealed sample is one magnitude higher than that of the in situ grown sample because of the effect of oxygen vacancy. The temperature dependence of resistivity exhibits semiconductor-like character. It was found that post-annealing by rapid thermal process will result in film cracks due to the thermal stress. The results are referential for the applications of LSCO in microelectronic devices.  相似文献   

14.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

15.
Systematic studies of synthesizing behaviors of sol-gel YBa2Cu3O7−x samples in flowing oxygen atmosphere and their superconductivity have been performed. A set of high temperature ρ-T curves has been obtained for the whole synthesizing process. After four rounds of synthesizing, the resistivity of the sample was around ρ=1.00×10−3Ω · cm at room temperature. The ρ-T curve of the fourth round shows that the orthorhombic to tetragonal phase transformation of the sample occurs around 600 °C, which is lower than that of the YBa2Cu3O7−x sample prepared by conventional solid-state reaction method. Other measurements, such as X-ray diffraction, SEM measurement and low temperature R-T and M-T measurement, were also performed. And the R-T and M-T measurement results suggest that during the synthesizing process, there exist some state at which the sample has better superconductivity than the other states. Moreover, we found screw dislocations presenting on the sample broken surface from the SEM images. This will change the concept that the screw dislocations can only grow on the surface of the YBCO thin films and single crystals.   相似文献   

16.
S Chandra  A K Sharma 《Pramana》1994,43(6):487-493
EinsteinA-values for the electric dipole transitions between the rotational levels up to 540 cm−1 andJ=11 in the ground vibrational state of the protonated N2O (i.e., HN2O+) are calculated. The coefficients are used to compute the mean radiative lifetimes of the levels. TheseA-values can be used for analysing the spectra from astronomical objects, if observed.  相似文献   

17.
Serge Zhuiykov  Eugene Kats 《Ionics》2012,18(8):797-802
In situ Fourier transform infrared spectroscopy (FTIR) was used to study adsorption properties of 20?mol% Cu2O-doped RuO2 sensing electrode (SE) screen-printed on the platinised alumina substrate of the planar electrochemical pH sensor and subsequently sintered at 800?°C. Morphology and properties of developed SEs were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and FTIR techniques. It was shown that both Cu2O doping and changes in the sintering condition of the SE affected morphology and adsorption spectra of 20?mol% Cu2O-doped RuO2. Fundamental vibration frequencies of ruthenium?Coxygen bond at a temperature of 23?°C as well as region above fundamental frequencies for the sub-micron 20?mol% Cu2O-doped RuO2-SE were identified.  相似文献   

18.
We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 (iso) with g = 2.0055 and SO 2 (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 respectively, SO 3 (iso) with g = 2.0031 and SO 3 (axial) with g = 2.0040, g = 2.0023, identical to mechanically induced SO 3 . We have established the participation of radiation-induced radical ions SO 3 in formation of post-radiation SO 2 . __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 4, pp. 467–472, July–August, 2006.  相似文献   

19.
LiAl x Mn2 − x O4 and LiAl0.05Mn1.95O4 − y F y spinel have been successfully synthesized by citric acid-assisted sol–gel method. The structure and physicochemical properties of this as-prepared powder were investigated by electronic conductivity test, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge test in detail. The electronic conductivity decreases with increasing of the content of doped Al. XRD patterns show that the diffraction of LiAl0.05Mn1.95O4 − y F y samples is similar, with all the peaks indexable in the Fd3m space group, and a little impurity appears in the LiAl0.05Mn1.95O3.8F0.2 sample. SEM reveals that all LiAl0.05Mn1.95O4 − y F y powders have the uniform, nearly cubic structure morphology with narrow size distribution which is less than 500 nm. Galvanostatic charge–discharge test indicates that LiAl0.05Mn1.95O4 has the highest discharge capacity and electrochemical performance among all LiAl x Mn2 − x O4 samples after 50 cycles, and the initial discharge capacity of LiAl0.05Mn1.95O4 − y F y (y = 0, 0.02, 0.05, 0.1) is 123.9, 124.6, 124.9, and 125.0 mAh g−1, respectively, and their capacity retention ratios are 94.2%, 94.9%, 91.7%, and 89.9% after 50 cycles, respectively. EIS indicates that LiAl0.05Mn1.95O3.98F0.02 have smaller charge transfer resistance than that of LiAl0.05Mn1.95O4 corresponding to the extraction of Li+ ions.  相似文献   

20.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号