首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly stable and highly soluble push–pull heptamethine hemicyanines based on the tricyanofuran electron‐accepting group can be prepared on a 15 g scale. The compounds display giant second‐order nonlinear figure of merit, μβ of up to 31 000×10?48 esu, and lead to a poled material with a second‐order nonlinear response, r33 of 90 pm V?1 at 1.06 μm  相似文献   

2.
Push–pull compounds, in which a proaromatic electron donor is conjugated to a 2‐dicyanomethylenethiazole acceptor, have been prepared, and their properties compared to those of model compounds featuring an aromatic donor. A combined experimental (X‐ray diffraction, 1H NMR, IR, Raman, UV/Vis, nonlinear optical (NLO) measurements) and theoretical study reveals that structural and solvent effects determine the ground‐state polarisation of these merocyanines: whereas 4H‐pyran‐4‐ylidene‐ and 4‐pyridylidene‐containing compounds are zwitterionic and 1,3‐dithiol‐2‐ylidene derivatives are close to the cyanine limit, anilino‐derived merocyanines are essentially neutral. This very large range of intramolecular charge transfer (ICT) gives rise to efficient second‐order NLO chromophores with μβ values ranging from strongly negative to strongly positive. In particular, pyranylidene derivatives are unusual in that they show an increase in the degree of ICT on lengthening the π‐spacer, a feature that lies behind the very large negative μβ values they display. The linking of the formally quinoidal 2‐dicyanomethylenethiazole moiety to proaromatic donors seems a promising approach towards the optimisation of zwitterionic NLO chromophores.  相似文献   

3.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

4.
A facile and fast approach, based on microwave‐enhanced Sonogashira coupling, has been employed to obtain in good yields both mono‐ and, for the first time, disubstituted push–pull ZnII porphyrinates bearing a variety of ethynylphenyl moieties at the β‐pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these β‐mono‐ or disubstituted ZnII porphyrinates and meso‐disubstituted push–pull ZnII porphyrinates. We have obtained evidence that, although the HOMO–LUMO energy gap of the meso‐substituted push–pull dyes is lower, so that charge transfer along the push–pull system therein is easier, the β‐mono‐ or disubstituted push–pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a β‐monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the β substitution on the incident photon‐to‐current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350–650 nm). In contrast, meso‐substitution produces IPCE spectra with two less intense and well‐separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge‐transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described β‐monosubstituted ZnII porphyrinates extremely promising sensitizers for use in DSSCs.  相似文献   

5.
A variety of asymmetrically donor–acceptor‐substituted [3]cumulenes (buta‐1,2,3‐trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol?1, in the range of the barriers for rotation around sterically hindered single bonds. The central C?C bond of the push–pull‐substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X‐ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor–acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition‐retroelectrocyclization (CA–RE) cascade characteristic of donor‐polarized acetylenes.  相似文献   

6.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

7.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

8.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

9.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

10.
A new series of self‐assembled supramolecular donor–acceptor conjugates capable of wide‐band capture, and exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques as artificial photosynthetic mimics. The donor host systems comprise of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) containing a crown ether entity at the meso‐position and two styryl entities on the pyrrole rings. The styryl end groups also carried additional donor (triphenylamine or phenothiazine) entities. The acceptor host system was a fulleropyrrolidine comprised of an ethylammonium cation. Owing to the presence of extended conjugation and multiple chromophore entities, the BODIPY host revealed absorbance and emission well into the near‐IR region covering the 300–850 nm spectral range. The donor–acceptor conjugates formed by crown ether–alkyl ammonium cation binding of the host–guest system was characterized by optical absorbance and emission, computational, and electrochemical techniques. Experimentally determined binding constants were in the range of 1–2×105 M ?1. An energy‐level diagram to visualize different photochemical events was established using redox, computational, absorbance, and emission data. Spectral evidence for the occurrence of photoinduced charge separation in these conjugates was established from femtosecond transient absorption studies. The measured rates indicated ultrafast charge separation and relatively slow charge recombination revealing their usefulness in light‐energy harvesting and optoelectronic device applications. The bis(donor styryl)BODIPY‐derived conjugates populated their triplet excited states during charge recombination.  相似文献   

11.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

12.
We designed, synthesized, and evaluated environmentally responsive solvatochromic fluorescent dyes by incorporating weak push–pull moieties. The quantum yields of the push (alkyl)–pull (formyl) pyrene dyes were dramatically enhanced by the introduction of alkyl groups into formylpyrene (1‐formylpyrene: ΦF=0.10; 3,6,8‐tri‐n‐butyl‐1‐formylpyrene: ΦF=0.90; in MeOH). The new dyes exhibited unique sensitivity to solvent polarity and hydrogen‐bond donor ability, and specific fluorescence turn‐on/off properties (e.g., 3,6,8‐tri‐n‐butyl‐1‐formylpyrene: ΦF=0.004, 0.80, 0.37, and 0.90 in hexane, chloroform, DMSO, and MeOH, respectively). Here, the alkyl groups act as weak donors to suppress intersystem crossing by destabilizing the HOMOs of 1‐formylpyrene while maintaining weak intramolecular charge‐transfer properties. By using alkyl groups as weak donors, environmentally responsive, and in particular, pH‐responsive fluorescent materials may be developed in the future.  相似文献   

13.
The structures and second‐order nonlinear optical (NLO) properties of a series of chlorobenzyl‐o‐carboranes derivatives ( 1 – 12 ) containing different push‐pull groups have been studied by density functional theory (DFT) calculation. Our theoretical calculations show that the static first hyperpolarizability (βtot) values gradually increase with increasing the π‐conjugation length and the strength of electron donor group. Especially, compound 12 exhibits the largest βtot (62.404×10?30 esu) by introducing tetrathiafulvalene (TTF), which is about 76 times larger than that of compound 1 containing aryl. This means that the appropriate structural modification can substantially increase the first hyperpolarizabilities of the studied compounds. For the sake of understanding the origin of these large NLO responses, the frontier molecular orbitals (FMOs), electron density difference maps (EDDMs), orbital energy and electronic transition energy of the studied compounds are analyzed. According to the two‐state model, the lower transition energy plays an important role in increasing the first hyperpolarizability values. This study may evoke possible ways to design preferable NLO materials.  相似文献   

14.
A highly water‐soluble phenothiazine (PTZ)–boron dipyrromethene (BODIPY)‐based electron donor–acceptor dyad ( WS‐Probe ), which contains BODIPY as the signaling antennae and PTZ as the OCl? reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl?. Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS‐Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1BODIPY*; the detection limit was calculated to be 26.7 nm . Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS‐Probe was able to detect OCl? selectively. Steady‐state fluorescence studies performed at varied pH suggested that WS‐Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI‐MS analysis and 1H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS‐Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl? in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS‐probe is non‐toxic up to 10 μm and implicates the use of the probe for biological applications.  相似文献   

15.
A porphyrin π‐system has been modulated by enhancing the push–pull character with highly asymmetrical substitution for dye‐sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron‐donating group and one carboxyphenylethynyl moiety as a strong electron‐withdrawing, anchoring group were introduced into the meso‐positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light‐harvesting property as well as high electron distribution in the anchoring group of LUMO, a push–pull‐enhanced, porphyrin‐sensitized solar cell exhibited more than 10 % power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)‐sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push–pull substitution will open the possibilities of further improving cell performance in organic solar cells.  相似文献   

16.
A series of donor–acceptor‐substituted alkynes, 2 a – f , was synthesized in which the length of the π‐conjugated polyyne spacer between the N,N‐diisopropylanilino donor and the 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) acceptor was systematically changed. The effect of this structural change on the optoelectronic properties of the molecules and, ultimately, their third‐order optical nonlinearity was comprehensively investigated. The branched N,N‐diisopropyl groups on the anilino donor moieties combined with the nonplanar geometry of 2 a – f imparted exceptionally high solubility to these chromophores. This important property allowed for performing INADEQUATE NMR measurements without 13C labeling, which, in turn, resulted in a complete assignment of the carbon skeleton in chromophores 2 a – f and the determination of the 13C–13C coupling constants. This body of data provided unprecedented insight into characteristic 13C chemical shift patterns in push–pull‐substituted polyynes. Electrochemical and UV/Vis spectroscopic studies showed that the HOMO–LUMO energy gap decreases with increasing length of the polyyne spacer, while this effect levels off for spacers with more than four acetylene units. The third‐order optical nonlinearity of this series of molecules was determined by measuring the rotational averages of the third‐order polarizabilities (γrot) by degenerate four‐wave mixing (DFWM). These latter studies revealed high third‐order optical nonlinearities for the new chromophores; most importantly, they provided fundamental insight into the effect of the conjugated spacer length in D–A polyynes, that can be exploited in the future design of suitable charge‐transfer chromophores for applications in optoelectronic devices.  相似文献   

17.
Six donor–acceptor‐type near‐infrared (NIR) aza–boron‐dipyrromethene (BODIPY) dyes and their corresponding aza–dipyrrins were designed and synthesized. The donor moieties at the 1,7‐positions of the aza–BODIPY core were varied from naphthyl to N‐phenylcarbazole to N‐butylcarbazole. The 3,5‐positions were also substituted with phenyl or thienyl groups in the aza–BODIPYs. Photophysical, electrochemical, and computational studies were carried out. The absorption and emission spectra of aza–BODIPYs were significantly redshifted (≈100 nm) relative to the parent tetraphenylaza–BODIPY. Fluorescence studies suggested effective energy transfer (up to 93 %) from donor groups to the aza–BODIPY core in all of the compounds under study. Time‐dependent (TD)‐DFT studies indicated effective electronic interactions between energy donor groups and aza–dipyrrin unit in all the aza–BODIPYs studied. The HOMO–LUMO gap (ΔE) calculated from cyclic voltammetry data was found to be lower for six aza–BODIPYs relative to their corresponding aza–dipyrrins.  相似文献   

18.
A series of fluorescent “push‐pull” tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited‐state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the “push–pull” character, which was enhanced by further introduction of an electron‐releasing Me2N group or an electron‐withdrawing NC group onto the quinoxaline unit (denoted as Me2N‐QTTH and NC‐QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL) were achieved. In particular, the maximum ΦFL of Me2N‐QTTH was 0.43 in benzene (NC‐QTTH: ΦFL=0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL=0.02). These enhancements were also explained by kinetic discussion of the excited‐state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right‐handed and left‐handed circularly polarized light) was estimated to be 3.0×10?3 for NC‐QTTH.  相似文献   

19.
An original strategy to construct a new donor–acceptor (D–A)‐integrated structure by directly imposing “pull” unit on the “push” moiety to form fused ring architecture has been developed, and poly{N‐alkyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐thiophene} (PCBTT) with D–A‐integrated structure, in which two 1,2,5‐thiadiazole rings are fixed on carbazole in 3‐, 4‐ and 5‐, 6‐position symmetrically and thiophene is used as bridge, has been synthesized. The interaction between pull and push units has fine tuned the HOMO/LUMO energy levels, and the resulting copolymer covers the solar flux from 300 to 750 nm. The interaction between pull and push units is worth noting that due to the fused five rings inducing strong intermolecular interaction, an extremely short π–π stacking distance of 0.32 nm has been achieved for PCBTT both in powder and solid states. This is the shortest π–π stacking distance reported for conjugated polymers. Additionally, an obvious intramolecular charge transfer and energy transfer from donor units to acceptor units have been detected in this D–A integration. A moderate‐to‐high open‐circuit voltage of ~0.7 V in PCBTT:[6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) (w/w = 1/2) solar cells is achieved due to the low‐lying HOMO energy level of PCBTT. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号