首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
First‐principles calculations are used to explore the strong binding of lithium to boron‐ and carbon‐doped BC2N monolayers (BC2NBC and BC2NCN, respectively) without the formation of lithium clusters. In comparison to BC2N and BC2NCB, lithium‐decorated BC2NBC and BC2NCN systems possess stronger s–p and p–p hybridization and, hence, the binding energy is higher. Lithium becomes partially positively charged by donating electron density to the more electronegative atoms of the sheet. Attractive van der Waals interactions are responsible for binding hydrogen molecules around the lithium atoms. Each lithium atom can adsorb three hydrogen molecules on both sides of the sheet, with an average hydrogen binding energy of approximately 0.2 eV, which is in the range required for practical applications. The BC2NBC–Li and BC2NCN–Li complexes can serve as high‐capacity hydrogen‐storage media with gravimetric hydrogen capacities of 9.88 and 9.94 wt %, respectively.  相似文献   

2.
The configurations, stability and electronic structures of a new class of boron sheet and related boron nanotubes are predicted within the framework of density functional theory. This boron sheet is sparser than those of recent proposals. Our theoretic results show that the stable boron sheet remains flat and is metallic. There are bands similar to the πbands in graphite near the Fermi level. Stable nanotubes with various diameters and chiral vectors can be rolled from the sheet. Within our study, only the thin (8, 0) nanotube with a band gap of 0.44 eV is semiconducting, while all the other thicker boron nanotubes are metallic, independent of their chirality. It indicates the possibility, in the design of nanodevices, to control the electronic transport properties of the boron nanotube through the diameter.  相似文献   

3.
The structural characteristics of perhydrogenated carbon and boron nitride nanotubes are determined by means of quantum chemical calculations. Two families of nanotubes are systematically studied for both carbon and boron nitride, the nanotubes being derived from the perhydrogenated (110) and (111) sheets of diamond and cubic boron nitride. Single‐walled perhydrogenated carbon nanotubes prefer structures analogous to the (111) sheet. In clear contrast, the single‐walled perhydrogenated boron nitride nanotubes prefer structures analogous to the (110) sheet. The significantly different structural characteristics are due to the polarization of hydrogen atoms in the perhydrogenated boron nitride nanotubes. The presence of attractive electrostatic H? H interactions leads to a strong preference for multilayering of the boron nitride sheets and nanotubes. The results are expected to provide new insights into the structural characteristics of main‐group binary hydrides.  相似文献   

4.
We report a simple and template‐free strategy for the synthesis of hollow and yolk‐shell iron oxide (FeOx) nanostructures sandwiched between few‐layer graphene (FLG) sheets. The morphology and microstructure of this material are characterized in detail by X‐ray diffraction, X‐ray absorption near‐edge structure, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Its properties are evaluated as negative electrode material for Li‐ion batteries and compared with those of solid FeOx/FLG and two commercial iron oxides. In all cases, the content of carbon in the electrode has a great influence on the performance. The use of pristine FLG improves the capacity retention and further enhancement is achieved with the hollow structure. For a low carbon loading of 18 wt. %, the presence of metallic iron in the hollow and yolk‐shell FeOx/FLG composite significantly enhances the capacity retention, albeit with a relatively lower initial reversible capacity, retaining above 97 % after 120 cycles at 1000 mA g?1 in the voltage range of 0.1–3.0 V.  相似文献   

5.
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices.  相似文献   

6.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

7.
Two‐dimensional hexagonal boron carbon nitride (BCN) nanosheets (NSs) were synthesized by new approach in which a mixture of glucose and an adduct of boric acid (H3BO3) and urea (NH2CONH2) is heated at 900 °C. The method is green, scalable and gives a high yield of BCN NSs with average size of about 1 μm and thickness of about 13 nm. Structural characterization of the as‐synthesized material was carried out by several techniques, and its energy‐storage properties were evaluated electrochemically. The material showed excellent capacitive behaviour with a specific capacitance as high as 244 F g?1 at a current density of 1 A g?1. The material retains up to 96 % of its initial capacity after 3000 cycles at a current density of 5 A g?1.  相似文献   

8.
By combining experimental measurements and computer simulations, we here show that for the bola‐like peptide amphiphiles XI4X, where X=K, R, and H, the hydrophilic amino acid substitutions have little effect on the β‐sheet hydrogen‐bonding between peptide backbones. Whereas all of the peptides self‐assemble into one dimensional (1D) nanostructures with completely different morphologies, that is, nanotubes and helical nanoribbons for KI4K, flat and multilayered nanoribbons for HI4H, and twisted and bilayered nanoribbons for RI4R. These different 1D morphologies can be explained by the distinct stacking degrees and modes of the three peptide β‐sheets along the x‐direction (width) and the z‐direction (height), which microscopically originate from the hydrogen‐bonding ability of the sheets to solvent molecules and the pairing of hydrophilic amino acid side chains between β‐sheet monolayers through stacking interactions and hydrogen bonding. These different 1D nanostructures have distinct surface chemistry and functions, with great potential in various applications exploiting the respective properties of these hydrophilic amino acids.  相似文献   

9.
First‐principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal‐functionalized silicene to envisage its hydrogen‐storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge‐transfer mechanisms are discussed from the perspective of hydrogen‐storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal‐to‐substrate binding and uniform distribution over the substrate, but also for the high‐capacity storage of hydrogen. The stabilities of both Li‐ and Na‐functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li+ and Na+, can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen‐storage applications.  相似文献   

10.
Semi‐metallic TiO2 nanotube arrays (TiOxCy NTs) have been decorated uniformly with Ni(OH)2 nanoparticles without the aid of a polymer binder. The resulting hybrid nanotube arrays exhibit excellent catalytic activity towards non‐enzymatic glucose electro‐oxidation. The anodic current density of the glucose oxidation is significantly improved compared with traditional TiO2 nanotubes decorated with Ni(OH)2. Moreover, the Ni(OH)2/TiOxCy NT‐based electrode shows a fast response, high sensitivity, wide linear range, good selectivity and stability towards glucose electro‐oxidation, and thus provides a promising and cost‐effective sensing platform for non‐enzymatic glucose detection.  相似文献   

11.
SeS2 shows attractive advantages beyond bare S and Se as a cathode material for lithium storage. Here, a freestanding lotus root‐like carbon fiber network decorated with CoS2 nanoparticles (denoted as CoS2@LRC) has been designed and prepared as the SeS2 host for enhancing the lithium storage performance. The integrated electrode is constructed by three‐dimensional interconnected multichannel carbon fibers, which can not only accommodate high content of SeS2 (70 wt %), but also promise excellent electron and ion transport for achieving high capacity utilization of 1015 mAh g−1 at 0.2 A g−1. What is more, there are numerous CoS2 nanoparticles decorated all over the inner walls and surfaces of the carbon fibers, providing efficient sulfiphilic sites for restricting the dissolution of polysulfides and polyselenides during the electrochemical processes, thus successfully suppressing the shuttle effect and maintaining excellent cycling stability over 400 cycles at 0.5 A g−1.  相似文献   

12.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

14.
A new and practical α‐monomethylation strategy using an amine‐borane/N,N‐dimethylformamide (R3N‐BH3/DMF) system as the methyl source was developed. This protocol has been found to be effective in the α‐monomethylation of arylacetonitriles and arylacetamides. Mechanistic studies revealed that the formyl group of DMF delivered the carbon and one hydrogen atoms of the methyl group, and R3N‐BH3 donated the remaining two hydrogen atoms. Such a unique reaction pathway enabled controllable assemblies of CDH2‐, CD2H‐, and CD3‐ units using Me2NH‐BH3/d7‐DMF, Me3N‐BD3/DMF and Me3N‐BD3/d7‐DMF systems, respectively. Further application of this method to the facile synthesis of anti‐inflammatory flurbiprofen and its varied deuterium‐labeled derivatives was demonstrated.  相似文献   

15.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

16.
Enabled by the reversible conversion between Li2O2 and O2, Li–O2 batteries promise theoretical gravimetric capacities significantly greater than Li‐ion batteries. The poor cycling performance, however, has greatly hindered the development of this technology. At the heart of the problem is the reactivity exhibited by the carbon cathode support under cell operation conditions. One strategy is to conceal the carbon surface from reactive intermediates. Herein, we show that long cyclability can be achieved on three dimensionally ordered mesoporous (3DOm) carbon by growing a thin layer of FeOx using atomic layer deposition (ALD). 3DOm carbon distinguishes itself from other carbon materials with well‐defined pore structures, providing a unique material to gain insight into processes key to the operations of Li–O2 batteries. When decorated with Pd nanoparticle catalysts, the new cathode exhibits a capacity greater than 6000 mAh gcarbon?1 and cyclability of more than 68 cycles.  相似文献   

17.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

18.
Enabled by the reversible conversion between Li2O2 and O2, Li–O2 batteries promise theoretical gravimetric capacities significantly greater than Li‐ion batteries. The poor cycling performance, however, has greatly hindered the development of this technology. At the heart of the problem is the reactivity exhibited by the carbon cathode support under cell operation conditions. One strategy is to conceal the carbon surface from reactive intermediates. Herein, we show that long cyclability can be achieved on three dimensionally ordered mesoporous (3DOm) carbon by growing a thin layer of FeOx using atomic layer deposition (ALD). 3DOm carbon distinguishes itself from other carbon materials with well‐defined pore structures, providing a unique material to gain insight into processes key to the operations of Li–O2 batteries. When decorated with Pd nanoparticle catalysts, the new cathode exhibits a capacity greater than 6000 mAh gcarbon−1 and cyclability of more than 68 cycles.  相似文献   

19.
An intriguing structural transition from the quasi‐planar form of B12 cluster upon the interaction with lithium atoms is reported. High‐level computations show that the lowest energy structures of LiB12, Li2B12, and Li3B12 have quasi‐planar (Cs), tubular (D6d), and cage‐like (Cs) geometries, respectively. The energetic cost of distorting the B12 quasi‐planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage‐like B12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li2B12) and cage‐like (Li3B12) boron structures reported to date.  相似文献   

20.
Even though transition‐metal phosphides (TMPs) have been developed as promising alternatives to Pt catalyst for the hydrogen evolution reaction (HER), further improvement of their performance requires fine regulation of the TMP sites related to their specific electronic structure. Herein, for the first time, boron (B)‐modulated electrocatalytic characteristics in CoP anchored on the carbon nanotubes (B‐CoP/CNT) with impressive HER activities over a wide pH range are reported. The HER performance surpasses commercial Pt/C in both neutral and alkaline media at large current density (>100 mA cm?2). A combined experimental and theoretical study identified that the B dopant could reform the local electronic configuration and atomic arrangement of bonded Co and adjacent P atoms, enhance the electrons’ delocalization capacity of Co atoms for high electrical conductivity, and optimize the free energy of H adsorption and H2 desorption on the active sites for better HER kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号