首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ycas G  Osterman S  Diddams SA 《Optics letters》2012,37(12):2199-2201
We present a multibranch laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 THz of bandwidth, from 660 nm to 2100 nm. Light from a mode-locked Er:fiber laser is amplified and then broadened in highly-nonlinear fiber to produce substantial power at ~1050 nm. This light is subsequently amplified in Yb:fiber to produce 1.2 nJ, 73 fs pulses at 1040 nm. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1040 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.  相似文献   

2.
We implement a simple optical clock based on the F2(2) [P(7), v3] optical transition in methane. A single femtosecond laser's frequency comb undergoes difference frequency generation to provide an IR comb at 3.39 microm with a null carrier-envelope offset. This IR comb provides a phase-coherent link between the 88-THz optical reference and the rf repetition rate. Comparison of the repetition rate signal with a second femtosecond comb stabilized to molecular iodine shows an instability of 1.2 x 10(-13) at 1 s, limited by microwave detection of the repetition rates. The single-sideband phase noise of the microwave signal, normalized to a carrier frequency of 1 GHz, is below -93 dBc/Hz at 1-Hz offset.  相似文献   

3.
We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f-2f interferometer and phase locked to an ultrastable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz-1 MHz), respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors, respectively.  相似文献   

4.
We report the generation of an octave-spanning optical frequency comb in a continuous wave laser pumped microresonator. The generated comb spectrum covers the wavelength range from 990 to 2170 nm without relying on additional external broadening. Continuous tunability of the generated frequency comb over more than an entire free spectral range is demonstrated. Moreover, the linewidth of individual optical comb components and its relation to the pump laser phase noise is studied. The ability to derive octave-spanning spectra from microresonator comb generators represents a key step towards f-2f self-referencing of microresonator-based optical frequency combs.  相似文献   

5.
Park SE  Kim EB  Park YH  Yee DS  Kwon TY  Park CY  Moon HS  Yoon TH 《Optics letters》2006,31(24):3594-3596
A sweep optical frequency synthesizer is demonstrated by using a frequency-stabilized optical frequency comb and injection-locked distributed-Bragg-reflector (DBR) laser diode. The injection-locked DBR laser acts as a single-frequency filter and, simultaneously, a high-gain amplifier of the optical frequency comb. The frequency instability of the heterodyne beat signal between two independently injection-locked DBR lasers is measured to be 2.3 x 10(-16) at 1 s averaging time. The output frequency of the sweep optical frequency synthesizer can be precisely tuned over 1 GHz, and a saturated absorption spectrum of the Cs D2 line at 852 nm is recorded by the injected DBR laser.  相似文献   

6.
A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.  相似文献   

7.
The absolute frequency of an acetylene-stabilized laser at 1542 nm is measured at its second harmonic (771 nm) by use of a femtosecond optical comb based on a mode-locked Ti:sapphire laser. Frequency stability and reproducibility of the acetylene-stabilized laser are evaluated by the femtosecond comb with a H maser as a frequency reference. The absolute frequency of a laser diode stabilized on the P(16) transition of 13C2H2 is determined to be 194 369 569 383.6(1.3) kHz. The acetylene-stabilized laser serves as an important optical frequency standard for telecommunication applications.  相似文献   

8.
A technique is presented for generating optical frequency combs centered at arbitrary wavelengths by use of cross-phase modulation (XPM) between a femtosecond pulse train and a cw laser beam by copropagating these signals through an optical fiber. We report results from use of this method to place a 90-MHz frequency comb on an iodine-stabilized Nd:YAG laser at 1064 nm and on a frequency-doubled Nd:YVO(4) laser at 532 nm. XPM is verified to be the comb-generating process, and the width of the frequency comb is measured and compared with theory. The spacing of the frequency comb is compared with the femtosecond source, and a frequency measurement with this comb is demonstrated.  相似文献   

9.
We present the first (to our best knowledge) femtosecond enhancement cavity in the visible wavelength range for ultraviolet frequency comb generation. The cavity is seeded at 518 nm by a frequency-doubled Yb fiber laser and operates at a peak intensity of 1.2×10(13) W/cm(2). High harmonics of up to the ninth order (~57 nm) are generated in an intracavity xenon gas jet. Intracavity high harmonic powers of several milliwatts for the third harmonic order and microwatts for the fifth harmonic order prove the potential of the "green cavity" as an efficient ultraviolet frequency comb source for future spectroscopic experiments. A limiting degradation effect of the cavity mirrors is avoided by operating at a constant oxygen background pressure.  相似文献   

10.
We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.  相似文献   

11.
Octave-spanning frequency comb generation in a silicon nitride chip   总被引:1,自引:0,他引:1  
Okawachi Y  Saha K  Levy JS  Wen YH  Lipson M  Gaeta AL 《Optics letters》2011,36(17):3398-3400
We demonstrate a frequency comb spanning an octave via the parametric process of cascaded four-wave mixing in a monolithic, high-Q silicon nitride microring resonator. The comb is generated from a single-frequency pump laser at 1562?nm and spans 128?THz with a spacing of 226?GHz, which can be tuned slightly with the pump power. In addition, we investigate the RF amplitude noise characteristics of the parametric comb and find that the comb can operate in a low-noise state with a 30?dB reduction in noise as the pump frequency is tuned into the cavity resonance.  相似文献   

12.
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-??m spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558?nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A?linewidth of ??150?kHz and a fractional frequency instability of 4.2×10?13 at 1?s are obtained for an optical comb line at 1558?nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558?nm. The fractional frequency stability of 8×10?14 at 1?s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.  相似文献   

13.
谢阳  韩海年  张龙  于子蛟  朱政  侯磊  庞利辉  魏志义 《中国物理 B》2016,25(4):44208-044208
We demonstrate a stable Yb:fiber frequency comb with supercontinuum generation by using a specially designed tapered single-mode fiber, in which a spectrum spanning from 500 nm to 1500 nm is produced. The carrier-envelope offset signal of the Yb:fiber comb is measured with a signal-to-noise ratio of more than 40 dB and a linewidth narrower than120 k Hz. The repetition rate and carrier-envelope offset signals are simultaneously phase locked to a microwave reference frequency.  相似文献   

14.
We have developed and characterized a pair of Doppler-free acetylene-stabilized diode laser frequency standards as optical communications references. The Allan deviation sigma/f of an individual system reaches a minimum of 4 x 10(-14) at a sampling time of 5000 s, and the long-term lock-point repeatability is found to be 0.4 kHz (one standard uncertainty), corresponding to a fractional uncertainty of 2 x 10(-12). Using a combination of a frequency chain and a self-referenced femtosecond comb, we have measured the frequency of line P(16) of the v1 + v3 overtone band of 13C2H2 to be 194,369,569,385.9 (3.0) kHz. The uncertainty of this number is limited solely by the reproducibility of the standards.  相似文献   

15.
The frequency-domain mode comb of a Ti:sapphire femtosecond laser centered at 350 THz is broadened to 150 THz (full width at -30 dBc) by self-phase modulation in a single-mode optical fiber. By phase locking continuous-wave lasers to elements of the comb near 1064 and 778 nm, we measure the 104-THz frequency gap between these two lasers with a relative uncertainty of 2.7 x 10(-11) in 1 s.  相似文献   

16.
With a fiber-broadened, femtosecond-laser frequency comb, the 76-THz interval between two laser-cooled optical frequency standards was measured with a statistical uncertainty of 2x10(-13) in 5 s , to our knowledge the best short-term instability thus far reported for an optical frequency measurement. One standard is based on the calcium intercombination line at 657 nm, and the other, on the mercury ion electric-quadrupole transition at 282 nm. By linking this measurement to the known Ca frequency, we report a new frequency value for the Hg(+) clock transition with an improvement in accuracy of ~10(5) compared with its best previous measurement.  相似文献   

17.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

18.
We report on generation of a 20 nm wide, 35 GHz repetition rate optical frequency comb in a magnesium fluoride whispering gallery mode resonator pumped with 2 mW of 1543 nm light. The high efficiency of comb generation is associated with the small anomalous group velocity dispersion of the resonator. Growth dynamics of the comb is studied and compared with earlier theoretical predictions.  相似文献   

19.
Diddams SA  Ma LS  Ye J  Hall JL 《Optics letters》1999,24(23):1747-1749
We introduce a novel broadband optical frequency comb generator consisting of a parametric oscillator with an intracavity electro-optic phase modulator. The parametric oscillator is pumped by 532-nm light and produces near-degenerate signal and idler fields. The modulator generates a comb structure about both the signal and the idler. Coupling between the two families of modes results in a dispersion-limited comb that spans 20 nm (5.3 THz). A signal-to-noise ratio of >30 dB in a 300-kHz bandwidth is observed in the beat frequency between individual comb elements and a reference laser.  相似文献   

20.
We present a fully stabilized Yb-fiber frequency comb locked to a microwave standard and an optical reference separately. The carrier-envelope offset frequency is generated by a standard f–2f interferometer with 40 dB signal-tonoise ratio. The offset frequency and the repetition rate are stabilized simultaneously to the radio frequency reference for more than 30 hours, and the fractional Allan deviation of the comb is the same as the microwave standard of 10-12 at 1 s.Alternatively, the comb is locked to an ultra-stable optical reference at 972 nm using an intracavity electro-optic modulator,exhibiting a residual integrated phase noise of 458 mrad(1 Hz–10 MHz) and an in-loop tracking stability of 1.77× 10-18 at 1 s, which is significantly raised by six orders comparing to the case locked to the microwave frequency standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号