首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Hydrophilic interaction chromatography (HILIC) has emerged as a very useful separation method for polar analytes, including non-covalent metal species. Several types of stationary phases are available for HILIC applications, differing mainly in their chemical functionalities that supply additional interaction modes and alternative selectivities for the separation of special analytes. With regard to the separation of metal species only few of these stationary phases have been applied to date, and it is not completely clear what are their differences with respect to the chromatographic separation of metal species, but also with respect to species stability during chromatography. Here, a comparison of different column types for the HILIC separation of iron citrate and copper histidine species is presented and the results are discussed with respect to retention mechanisms and chromatographic stability of these metal species. It is shown that different stationary phases display very different separation patterns. In particular, three types of HILIC columns enable successful separation of iron citrates and copper histidine at pH 5.5, namely a crosslinked diol phase, a zwitterionic phase, and an amide phase. Two groups of iron-citrates are separated on all three columns, consisting of a species of 3:3 stoichiometry and another one of mainly 3:4 stoichiometry (plus 1:2 and 2:2 species). For copper-histidine only one stable species is found based on the 1:2 stoichiometry. Detection and unambiguous identification of the different species is possible by employing electrospray mass spectrometry in the negative ionization mode. Species found in standard solutions are consistent with species found in spiked plant samples. Also in unspiked solutions iron citrate of 3:4 stoichiometry (plus 1:2 and 2:2) is detectable, but no species of 3:3 stoichiometry. Significant differences of related species patterns are found in real plant samples.  相似文献   

2.
A key issue regarding the speciation of Al(3+) in serum is how well the ligands citric acid and phosphate can compete with the iron transport protein serum transferrin for the aluminum. Previous studies have attempted to measure binding constants for each ligand separately, but experimental problems make it very difficult to obtain stability constants with the accuracy required to make a meaningful comparison between these ligands. In this study, effective binding constants for Al-citrate and Al-phosphate at pH 7.4 have been determined using difference UV spectroscopy to monitor the direct competition between these ligands and transferrin. The analysis of this competition equilibrium also includes the binding of citrate and phosphate as anions to apotransferrin. The effective binding constants are 10(11.59) for the 1:1 Al-citrate complexes and 10(14.90) for the 1:2 Al-citrate complexes. The effective binding constant for the 1:2 Al-phosphate complex is 10(12.02). No 1:1 Al-phosphate complex was detected. Speciation calculations based on these effective binding constants indicate that, at serum concentrations of citrate and phosphate, citrate will be the primary low-molecular-mass ligand for aluminum. Formal stability constants for the Al-citrate system have also been determined by potentiometric methods. This equilibrium system is quite complex, and information from both electrospray mass spectrometry and difference UV experiments has been used to select the best model for fitting the potentiometric data. The mass spectra contain peaks that have been assigned to complexes having aluminum:citrate stoichiometries of 1:1, 1:2, 2:2, 2:3, and 3:3. The difference UV results were used to determine the stability constant for Al(H(-1)cta)-, which was then used in the least-squares fitting of the potentiometric data to determine stability constants for Al(Hcta)+, Al(cta), Al(cta)2(3-), Al(H(-1)cta)(cta)(4-), Al2(H(-1)cta)2(2-), and Al3(H(-1)cta)3(OH)(4-).  相似文献   

3.
EDTA forms stable complexes with plutonium that are integral to nuclear material processing, radionuclide decontamination, and the potentially enhanced transport of environmental contamination. To characterize the aqueous Pu(4+/3+)EDTA species formed under the wide range of conditions of these processes, potentiometry, spectrophotometry, and cyclic voltammetry were used to measure solution equilibria. The results reveal new EDTA and mixed-ligand complexes and provide more accurate stability constants for previously identified species. In acidic solution (pH < 4) and at 1:1 ligand to metal ratio, PuY (where Y4- is the tetra-anion of EDTA) is the predominant species, with an overall formation constant of log beta110 = 26.44. At higher pH, the hydrolysis species, PuY(OH)- and PuY(OH)(2)2-, form with the corresponding overall stability constants log beta(11 - 1) = 21.95 and log beta(11 - 2) = 15.29. The redox potential of the complex PuY at pH = 2.3 was determined to be E(1/2) = 342 mV. The correlation between redox potential, pH, and the protonation state of PuY- was derived to estimate the redox potential of the Pu(4+/3+)Y complex as a function of pH. Under conditions of neutral pH and excess EDTA relative to Pu4+, PuY(2)4- forms with an overall formation constant of log beta120 = 35.39. In the presence of ancillary ligands, mixed-ligand complexes form, as exemplified by the citrate and carbonate complexes PuY(citrate)3- (log beta1101 = 33.45) and PuY(carbonate)2- (log beta1101 = 35.51). Cyclic voltammetry shows irreversible electrochemical behavior for these coordinatively saturated Pu4+ complexes: The reduction wave is shifted approximately -400 mV from the reduction wave of the complex PuY, while the oxidation wave is invariant.  相似文献   

4.
Acetamidomalondihydroxamate (K2AcAMDH) and its manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV–VIS, IR and magnetic susceptibility. The pK a1 and pK a2 values of the dihydroxamic acid in aqueous solution were found to be 8.0?±?0.1 and 9.7?±?0.1. The dihydroxamate anion AcAMDH behaves as a tetradentate bridging ligand through both hydroxamate groups, forming complexes with a metal to ligand ratio of 1?:?1 in the solid state. The FTIR spectra and thermal decompositions of the ligand and its metal complexes were recorded. The redox behavior of the complexes was investigated in aqueous solution by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, in solution the copper(II) and zinc(II) ions form stable complex species with a metal to ligand ratio of 1?:?2. The iron(II) and nickel(II) complexes show a two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo reversible electrode reactions. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

5.

3-Carboxylacetonehydroxamic acid (CAHA) and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV-Vis and IR spectra and magnetic susceptibility. The pK a1 and pK a2 values of the ligand in aqueous solution were found to be 6.5 ± 0.1 and 8.6 ± 0.1, which correspond to dissociation of carboxyl and hydroxamic protons, respectively. The dianion CAH acts as a tetradentate ligand through the hydroxamate and carboxylate groups and coordinates to the divalent metal ions, forming coordination polymers with a metal-to-ligand ratio of 1 : 1 in the solid state. FTIR spectra and thermal decomposition of the ligand and its metal complexes were recorded and briefly discussed. The electrochemical behavior of the complexes was investigated by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, the iron(II) and copper(II) cations form stable complex species with a metal-to-ligand ratio of 1 : 2 in solution. The iron(II), cobalt(II) and nickel(II) complexes show two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo quasi-reversible and reversible electrode reactions, respectively. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

6.
UV photolysis of the ferric aerobactin complex results in decarboxylation of the alpha-hydroxy carboxylic acid group of the central citrate moiety of aerobactin. The structure determination of the photooxidized ligand shows that decarboxylation occurs at the citrate moiety forming a 3-ketoglutarate moiety. Proton and carbon-13 NMR establish the presence of keto and enol tautomers of the apo-photoproduct, with the enol form prevailing in water. The photoproduct retains the ability to coordinate iron(III). The values of the ligand protonation constants, the pKa of the Fe(III)-ligand complex, and the Fe(III) stability constant of the photoproduct of aerobactin are all close to those of aerobactin. CD spectroscopy suggests that the chirality of the ferric complexes of aerobactin and its photoproduct are similar. Like aerobactin, the photoproduct promotes iron acquisition by the source bacterium, Vibrio sp. DS40M5.  相似文献   

7.
It was established that chemically stable water-soluble citrate complexes of heavy metals, which are widespread forms of their occurrence under natural conditions, can be mineralized in the course of metabolism of citrate ligand by Basillus cereus AUMC 4368 metallophilic bacterial culture. Biodegradation of metal citrate complexes is not directly related to their stability constants and corresponds to the Ca (Mg, Sr) > Fe(III) > Zn (Cu, Ni, Co, Cd) > U(VI) series. As a result of biomineralization of water-soluble metal citrate complexes, pH of dispersion medium increases and water-insoluble salts, mainly carbonates and hydroxides, can be formed; correspondingly, the disperse state of metals can be changed. Exception is uranium(VI) that forms (at pH 8) water-soluble stable uranyl carbonate complex. It was shown that the bound forms of metals (water-soluble complexes, insoluble precipitants) are nontoxic for microorganisms.  相似文献   

8.
The water-soluble complexes of Ti(IV) with citrate are of interest in environmental, biological, and materials chemistry. The aqueous solution speciation is revealed by spectropotentiometric titration. From pH 3-8, given at least three equivalents of ligand, 3:1 citrate/titanium complexes predominate in solution with successive deprotonation of dangling carboxylates as the pH increases. In this range and under these conditions, hydroxo- or oxo-metal species are not supported by the data. At ligand/metal ratios between 1:1 and 3:1, the data are difficult to fit, and are consistent with the formation of such hydroxo- or oxo- species. Stability constants for observed species are tabulated, featuring log beta-values of 9.18 for the 1:1 complex [Ti(Hcit)](+), and 16.99, 20.41, 16.11, and 4.07 for the 3:1 complexes [Ti(H(2)cit)(3)](2-), [Ti(H(2)cit)(Hcit)(2)](4-), [Ti(Hcit)(2)(cit)](6-), and [Ti(cit)(3)](8-), respectively (citric acid = H(4)cit). Optical spectra for the species are reported. The complexes exhibit similar yet distinct spectra, featuring putative citrate-to-Ti(IV) charge-transfer absorptions (lambda(max) approximately 250-310 nm with epsilon approximately 5000-7000 M(-)(1) cm(-1)). The prevailing 3:1 citrate/titanium ratio in solution is supported by electrospray mass spectrometry data. The X-ray crystal structure of a fully deprotonated tris-citrate complex Na(8)[Ti(C(6)H(4)O(7))(3)].17H(2)O (1) (or Na(8)[Ti(cit)(3)].17H(2)O) that crystallizes from aqueous solution at pH 7-8 is reported. Compound 1 crystallizes in the triclinic space group P, with a = 11.634(2) Angstroms, b = 13.223(3) Angstroms, c = 13.291(3) Angstroms, V = 1982.9(7) Angstroms(3), and Z = 2.  相似文献   

9.
Iron (III) complexes of some smoke flavour compounds (2-allyloxyphenol, guaiacol, eugenol and 2-ethoxyphenol) were synthesised and characterised by UV-Vis spectroscopy and ESI mass spectrometry. The ligand metal binding ratio was found to be 1?:?1 by the Job plot method. Antimicrobial activity of the ligand iron complex was determined against Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. This activity was compared with that of the free ligand (four smoke flavour compounds). While enhanced antimicrobial activities of guaiacol and 2-ethoxyphenol iron complexes were observed, this effect was, however, limited for eugenol and 2-allyloxyphenol iron complexes. In this study, it was established for the first time that not only do smoke flavour compounds complex with iron which could potentially retard food spoilage, but also after complexation, some complexes attain antimicrobial activities compared to the inactive free ligands.  相似文献   

10.
The new ditopic catecholamide 3,7,11-tris-{N-[3,4-(dihydroxybenzoyl)-aminopropyl]} derivative of a 14-membered tetraazamacrocycle containing pyridine (H(6)L(1)) has been synthesized. The protonation constants of (L(1))(6-) and the stability constants of its mono-, homo- and hetero-dinuclear complexes with Fe(3+), Cu(2+) and Zn(2+) metal ions were determined at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO(3). The large overall basicity of the ligand was ascribed to the very high protonation constants of the catecholate groups, and its acid-base behaviour was correlated with the presence of tertiary nitrogen atoms and secondary amide functions. The UV-vis spectrum of the red solution of [FeL(1)](3-) complex exhibits the LMCT band of catecholate to iron(III), and its EPR spectrum revealed a typical isotropic signal of a rhombic distorted ferric centre in a high-spin state and E/D approximately 0.31, both characteristic of a tris-catecholate octahedral environment. The ligand forms with copper(II) and zinc(II) ions mono- and dinuclear protonated complexes and their stability constants were determined, except for the [ML(1)](4-) complexes as the last proton is released at very high pH. Electronic spectroscopic studies of the copper complexes revealed the involvement of catecholate groups in the coordination to the metal centre in the mono- and dinuclear copper(II) complexes. This information together with the determined stability constants indicated that the copper(II) ion can be involved in both types of coordination site of the ligand with comparable binding affinity. The EPR spectrum of [Cu(2)L(1)](2-) showed a well resolved seven-line hyperfine pattern of copper(II) dinuclear species typical of a paramagnetic triplet spin state with weak coupling between the two metal centres. Thermodynamically stable heterodinuclear complexes, [CuFeH(h)L(1)](h-1) (h = 0-3) and [CuZnH(h)L(1)](h-2) (h = 0-4), were formed as expected from a ditopic ligand having two dissimilar coordination sites. At physiological pH, the [CuFeL(1)](-) complex is formed at approximately 100%. The formation of the [CuFeH(h)L(1)](h-1) complexes in solution was supported by electronic spectroscopic measurements. The data indicated the specific coordination of each metal centre at the dissimilar sites of the ligand, the iron(III) bound to the oxygen donors of the catecholate arms and the copper(II) coordinated to the amine donors of the macrocyclic ring. The two metal centres are weakly coupled, due to the fairly large distance between them.  相似文献   

11.
The impact of ligand protonation on metal speciation dynamics is quantitatively described. Starting from the usual situation for metal complex formation reactions in aqueous systems, i.e., exchange of water for the ligand in the inner coordination sphere as the rate-determining step (Eigen mechanism), expressions are derived for the lability of metal complexes with protonated and unprotonated ligand species being involved in formation of the precursor outer-sphere complex. A differentiated approach is developed whereby the contributions from all outer-sphere complexes are included in the rate of complex formation, to an extent weighted by their respective stabilities. The stability of the ion pair type outer-sphere complex is given particular attention, especially for the case of multidentate ligands containing several charged sites. It turns out that in such cases, the effective ligand charge can be considerably different from the formal charge. The lability of Cd(II) complexes with 1,2-diaminoethane-N,N'-diethanoic acid at a microelectrode is reasonably well predicted by the new approach.  相似文献   

12.
Cukrowska E  Cukrowski I 《Talanta》1998,47(5):2799-1189
The ligand monoaza-12-crown-4 ether (A12C4) was studied in aqueous solution at 298 K and an ionic strength of 0.5 mol dm−3 in the presence of an excess of sodium ion (0.5 mol dm−3 NaNO3). The protonation constant of A12C4, determined by glass electrode potentiometry (GEP) in the same background electrolyte, was found to be log K=9.36±0.03. Polarographic experimental and calculated complex formation curves (ECFC and CCFC) for labile metal–ligand systems, studied at a fixed total ligand (LT) to total metal (MT) concentration ratio and varied pH, were used for the modelling of the metal species formed and the refinement of their stability constants. The metal–ligand model and formation constants are optimised by solving mass-balance equations written for the assumed model and by fitting the CCFC to the ECFC. The CCFC can be generated for any metal–ligand model, including polynuclear metal species, for any LT:MT ratio, and for more than one ligand competing in the complex formation reaction. Three lead complexes with the ligand A12C4, viz. PbL2+, PbL(OH)+ and PbL(OH)2, were found and their overall stability constants from differential pulse polarography (DPP), as log β, were estimated to be 3.75±0.03, 9.30±0.05 and 12.70±0.05, respectively. Two copper complexes CuL2+ and CuL(OH)2 are reported and their stability constants (from DPP) were estimated to be 6.00±0.05 and 21.77±0.1, respectively. Two cadmium complexes CdL2+ and CdL(OH)+ are reported. The stability constant for CdL2+ was estimated from DPP and GEP as 2.80±0.05 and 2.68±0.03 (the latter value was obtained from a few potentiometric experimental points), respectively, and the stability constant for CdL(OH)+ from DPP was estimated to be 7.88±0.05. GEP could not be used for the stability constants determination of other metal complexes studied because of precipitation occurring prior the completion of a complex formation reaction.  相似文献   

13.
Thermodynamic stability of metal–aminoacid complexes in water is discussed in terms of the Gibbs free energy of water–ligand exchange processes, and the electronic stabilizing factors thoroughly investigated by means of 1‐electron and 2‐electron density properties. Hexacoordinated complexes formed between iron cations and glycine molecules acting as monodentate or bidentate ligands have been chosen as targets for the current study. Results agree with experimental findings, and complexes formed with bidentate ligands are found to be more stable than those formed with monodentate ones. The larger the number of the coordinated glycine molecules the more stable is the complex. Fe(III) complexes are more stable than Fe(II) ones, but differences are small and the Fe3+/Fe2+ exchange process appears to be energetically feasible for these complexes. Formation of the second glycine–iron interaction involving the amino nitrogen in the bidentate ligands is enthalpycally unfavorable but takes place due to the large entropy rise of the process. The larger stability of Fe(III) complexes is due however to the balance between energetic and solvation terms, which is favorable to these complexes. Electron density properties account satisfactorily for the electronic energy changes along the complex formation in terms of ligand–metal electron transfer and covalent bond orders. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

14.
Dimeric complex ions of the type [M(A-H)A]+, where M=metal ion (Co, Ni, Cu, and Zn) and A=ligand (lactic acid, methyl lactate or ethyl lactate), were generated in the gas phase under electrospray ionization conditions. The collision-induced dissociation spectra of [M(A-H)A]+ ions were recorded to study the behaviour of ligand and metal ions in decomposition of these dimeric complex ions. Based on the fragmentation pathways observed for complex ions of lactic acid, it is found that both the carboxylic and hydroxyl groups of lactic acid are involved in the complex formation following displacement of a proton by the metal ion. The dimeric complex ions of Co, Ni, and Zn dissociated to yield similar types of ions, whereas that of Cu behaved differently. The dissociations of Co-, Ni-, and Zn-bound dimeric complexes involved losses of neutral molecules while keeping the oxidation state of the metal ion unchanged. However, elimination of radicals is found in the dissociation of dimeric complex ions of Cu, and the oxidation state of copper is reduced from Cu(II) to Cu(I) in the resulting fragment ions. The deprotonated ligand is involved in the fragmentation pathway of Cu complexes, whereas it is intact in other complexes. The oxidation state of the metal ion, nature of the ligand, and site of attachment to the metal ion are found to control the dissociation of these dimeric complex ions.  相似文献   

15.
A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited higher antibacterial acivities.  相似文献   

16.
Abstract

The gel chromatographic behavior of metal ions in a labile complex formation system was expressed as a function of the ligand concentration in an eluent and the stability constants of the complexes. Trimeta- and tetrametaphosphate complexes with bivalent metal ions were used as examples. The retention volumes of the metal complexes were found to be always greater than those of the corresponding free ligands.  相似文献   

17.
描述了一种新颖、简便的合成含五齿配位基的大环席夫碱配体的方法,制备和表征了该席夫碱的1∶1包合物。用化学和光谱学方法测定了标题配合物的组成,认为在所有配合物中配位金属原子取八面体结构。数据表明:配体起O2N4六齿结构而每个环绕金属原子在八面体环境中。配合物的红外和1H NMR光谱符合中心金属原子的配位结果。用分光光度法测定了配合物的稳定常数。用共轭余量法(CR method)计算了在热分解的不同阶段配合物活化的动力学和热力学参数。此外,用抑菌圈直径法筛选了配体及其金属配合物抑制细菌和真菌的能力。用回收率试验研究了天然螯合配体在不同天然水体中对Fe(Ⅲ)离子配合作用的影响。  相似文献   

18.
An on-line method for the analysis of Sb(III), Sb(V) and trimethylstiboxide (TMSbO) is presented. The separation is performed using ion chromatography (IC) on a strong anion-exchange column with phthalic acid plus 2% acteone at pH 5 as mobile phase. The chromatographic system is coupled to an ICP-MS as detector. The influence of different complexing agents on the chromatographic behavior of the antimony species is studied. Rather stable complexes of Sb(III) seem to be formed with citrate and tartrate under the experimental conditions. TMSbO forms a dianionic species with citrate in contrast to the otherwise monoanionic complex. Received: 31 Juli 1997 / Revised: 8 December 1997 / Accepted: 11 December 1997  相似文献   

19.
Iron(III)-5-fluorosalicylic acid systems were investigated in water by pH potentiometry combined with UV-VIS spectrophotometry. The data revealed that stable aquated mono-, bis-, and tris(5-fluorosalicylato) iron(III) complexes are formed together with their monohydroxo and dihydroxo analogues. The stability constants of all present iron(III) species were calculated. Based on pH and the metal: ligand ratio dependent distribution of the species, electronic absorption spectra of the complexes in the visible region were obtained. Redox stability was monitored as an ability to undergo both spontaneous and photoinduced reduction of iron(III) to iron(II). Complexes do not undergo any redox changes when in dark neither in methanol nor in water. While aqueous solutions of complexes are stable under the influence of incident visible radiation, steady-state irradiation of the methanolic systems by visible light led to photoreduction of iron(III) to iron(II), the quantum yield of iron(II) photoformation was determined. Dedicated to Professor Milan Melník on the occasion of his 70th birthday  相似文献   

20.
The kinetics of ligand exchange between ferric citrate and desferrioxamine B (DFB) was investigated at pH 8.0 and high citrate/Fe molar ratios (500-5000) with particular attention given to understanding the precise mechanism of ligand exchange. Ferric citrate complexes present in a test solution and therefore involved in the reaction with the incoming ligand (DFB) were initially examined by evaluating ferric citrate speciation on the basis of published thermodynamic constants. The speciation analysis indicated that mononuclear (mono- and dicitrate) ferric complexes are the major species responsible for the ligand exchange with DFB under the conditions examined in the present work. Given the tendency of DFB to adjunctively associate with the ferric citrate complexes, we propose a kinetic model containing the following three mechanisms: (i) direct association of DFB to the ferric dicitrate complex prior to any dissociation of citrate molecules from the Fe center, (ii) adjunctive association of DFB toward ferric monocitrate complex following dissociation of one molecule of citrate from the parent complex, and (iii) complexation of hydrated Fe by DFB after sequential dissociation of two molecules of citrate from the Fe center. Overall rates for the ligand exchange were determined by spectrophotometrically monitoring the formation of ferrioxamine B. Further analysis in quantifying the rate of each mechanism by use of published and determined rate constants of relevant elemental reactions suggested that the first and second mechanisms were significant under our experimental conditions where [Cit] ? [DFB] with the relative importance of these two pathways depending on citrate concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号