首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

2.
3.
The frequency or dispersion relation for the least‐squares mixed formulation of the shallow‐water equations is analysed. We consider the use of different approximation spaces corresponding to co‐located and staggered meshes, respectively. The study includes the effect of Coriolis, and the dispersion properties are compared analytically and graphically with those of the mixed Galerkin formulation. Numerical solutions of a test problem to simulate slow Rossby modes illustrate the theoretical results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
We present a finite element method for Stokes equations using the Crouzeix‐Raviart element for the velocity and the continuous linear element for the pressure. We show that the inf‐sup condition is satisfied for this pair. Two numerical experiments are presented to support the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A fractional step method for the solution of the steady state incompressible Navier–Stokes equations is proposed in this paper in conjunction with a meshless method, named discrete least‐squares meshless (DLSM). The proposed fractional step method is a first‐order accurate scheme, named semi‐incremental fractional step method, which is a general form of the previous first‐order fractional step methods, i.e. non‐incremental and incremental schemes. One of the most important advantages of the proposed scheme is its capability to use large time step sizes for the solution of incompressible Navier–Stokes equations. DLSM method uses moving least‐squares shape functions for function approximation and discrete least‐squares technique for discretization of the governing differential equations and their boundary conditions. As there is no need for a background mesh, the DLSM method can be called a truly meshless method and enjoys symmetric and positive‐definite properties. Several numerical examples are used to demonstrate the ability and the efficiency of the proposed scheme and the discrete least‐squares meshless method. The results are shown to compare favorably with those of the previously published works. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
An adaptive least‐squares finite element method is used to solve the compressible Euler equations in two dimensions. Since the method is naturally diffusive, no explicit artificial viscosity is added to the formulation. The inherent artificial viscosity, however, is usually large and hence does not allow sharp resolution of discontinuities unless extremely fine grids are used. To remedy this, while retaining the advantages of the least‐squares method, a moving‐node grid adaptation technique is used. The outstanding feature of the adaptive method is its sensitivity to directional features like shock waves, leading to the automatic construction of adapted grids where the element edge(s) are strongly aligned with such flow phenomena. Using well‐known transonic and supersonic test cases, it has been demonstrated that by coupling the least‐squares method with a robust adaptive method shocks can be captured with high resolution despite using relatively coarse grids. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides a comparison of five finite element pairs for the shallow water equations. We consider continuous, discontinuous and partially discontinuous finite element formulations that are supposed to provide second‐order spatial accuracy. All of them rely on the same weak formulation, using Riemann solver to evaluate interface integrals. We define several asymptotic limit cases of the shallow water equations within their space of parameters. The idea is to develop a comparison of these numerical schemes in several relevant regimes of the subcritical shallow water flow. Finally, a new pair, using non‐conforming linear elements for both velocities and elevation (P?P), is presented, giving optimal rates of convergence in all test cases. P?P1 and P?P1 mixed formulations lack convergence for inviscid flows. P?P2 pair is more expensive but provides accurate results for all benchmarks. P?P provides an efficient option, except for inviscid Coriolis‐dominated flows, where a small lack of convergence is observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we present a stress‐based least‐squares finite‐element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward‐facing step problem is solved on several meshes. Results are compared with that obtained using vorticity‐based first‐order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This work presents a finite element solution of the 3D magneto‐hydrodynamics equations. The formulation takes explicitly into account the local conservation of the magnetic field, giving rise to a conservative formulation and introducing a new scalar variable. A stabilization technique is used in order to allow equal linear interpolation on tetrahedral elements of all the variables. Numerical tests are performed in order to assess the stability and the accuracy of the resulting methods. The convergence rates are calculated for different stabilization parameters. Well‐known MHD benchmark tests are calculated. Results show good agreement with analytical solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a simple finite element method for Stokes flows with surface tension. The method uses an unfitted mesh that is independent of the interface. Due to the surface force, the pressure has a jump across the interface. Based on the properties of the level set function that implicitly represents the interface, the jump of the pressure is removed, and a new problem without discontinuities is formulated. Then, classical stable finite element methods are applied to solve the new problem. Some techniques are used to show that the method is equivalent to an easy‐to‐implement method that can be regarded as a traditional method with a modified pressure space. However, the matrix of the resulting linear system of equations is the same as that of the traditional method. Optimal error estimates are derived for the proposed method. Finally, some numerical tests are presented to confirm the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A least‐squares finite element model with spectral/hp approximations was developed for steady, two‐dimensional flows of non‐Newtonian fluids obeying the Carreau–Yasuda constitutive model. The finite element model consists of velocity, pressure, and stress fields as independent variables (hence, called a mixed model). Least‐squares models offer an alternative variational setting to the conventional weak‐form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on the approximation spaces used for the velocity, pressure, and stress fields are necessary when the polynomial order (p) used is sufficiently high (say, p > 3, as determined numerically). Also, the use of the spectral/hp elements in conjunction with the least‐squares formulation with high p alleviates various forms of locking, which often appear in low‐order least‐squares finite element models for incompressible viscous fluids, and accurate results can be obtained with exponential convergence. To verify and validate, benchmark problems of Kovasznay flow, backward‐facing step flow, and lid‐driven square cavity flow are used. Then the effect of different parameters of the Carreau–Yasuda constitutive model on the flow characteristics is studied parametrically. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Stabilized finite element methods have been shown to yield robust, accurate numerical solutions to both the compressible and incompressible Navier–Stokes equations for laminar and turbulent flows. The present work focuses on the application of higher‐order, hierarchical basis functions to the incompressible Navier–Stokes equations using a stabilized finite element method. It is shown on a variety of problems that the most cost‐effective simulations (in terms of CPU time, memory, and disk storage) can be obtained using higher‐order basis functions when compared with the traditional linear basis. In addition, algorithms will be presented for the efficient implementation of these methods within the traditional finite element data structures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
We develop an efficient fourth‐order finite difference method for solving the incompressible Navier–Stokes equations in the vorticity‐stream function formulation on a disk. We use the fourth‐order Runge–Kutta method for the time integration and treat both the convection and diffusion terms explicitly. Using a uniform grid with shifting a half mesh away from the origin, we avoid placing the grid point directly at the origin; thus, no pole approximation is needed. Besides, on such grid, a fourth‐order fast direct method is used to solve the Poisson equation of the stream function. By Fourier filtering the vorticity in the azimuthal direction at each time stage, we are able to increase the time step to a reasonable size. The numerical results of the accuracy test and the simulation of a vortex dipole colliding with circular wall are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The paper deals with the use of the discontinuous Galerkin finite element method (DGFEM) for the numerical solution of viscous compressible flows. We start with a scalar convection–diffusion equation and present a discretization with the aid of the non‐symmetric variant of DGFEM with interior and boundary penalty terms. We also mention some theoretical results. Then we extend the scheme to the system of the Navier–Stokes equations and discuss the treatment of stabilization terms. Several numerical examples are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号