首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly stereoselective and efficient total synthesis of trans-dihydronarciclasine from a readily available chiral starting material was developed. The synthesis defines two of the five stereogenic centers of the natural product by an amino acid ester-enolate Claisen rearrangement. The other three stereogenic centers are created in a highly stereocontrolled fashion via a six-ring vinylogous ester intermediate, which is generated from the γ,δ-unsaturated ester functional group of the Claisen rearrangement product in an efficient three-step sequence. This concise total synthesis exemplifies the use of a highly regioselective Friedel-Crafts-type cyclization to form the B ring via an isocyanate intermediate derived from an N-Boc group, which is superior to the conventional method using an imino triflate intermediate. This same N-Boc group is employed to give high selectivity in the Claisen rearrangement earlier in the sequence.  相似文献   

2.
An enantioselective route to the tetracyclic skeleton of sarain A has been developed. Asymmetric reduction of an ynone introduced a chiral center which was transferred to the contiguous tertiary stereogenic centers through an Ireland–Claisen rearrangement. The 2‐azabicyclo[3.3.1]nonane framework was constructed by an unprecedented intramolecular cycloaddition of an eight‐membered cyclic nitrone. Using the steric bias of the bicyclic system, the quaternary carbon atom was constructed by a stereoselective aldol reaction. Further ring formations were performed by ring‐closing metathesis for the 13‐membered ring and an iodoamidation reaction for the pyrrolidine ring. The present synthesis has successfully provided an alternative route to the late‐stage intermediate of Overman’s synthesis.  相似文献   

3.
The enantioselective total synthesis of (−)‐tetrodotoxin [(−)‐TTX] and 4,9‐anhydrotetrodotoxin, which are selective blockers of voltage‐gated sodium channels, was accomplished from the commercially available p ‐benzoquinone. This synthesis was based on efficient stereocontrol of the six contiguous stereogenic centers on the core cyclohexane ring through Ogasawara's method, [3,3]‐sigmatropic rearrangement of an allylic cyanate, and intramolecular 1,3‐dipolar cycloaddition of a nitrile oxide. Our synthetic route was applied to the synthesis of the tetrodotoxin congeners 11‐norTTX‐6(R )‐ol and 4,9‐anhydro‐11‐norTTX‐6(R )‐ol through late‐stage modification of the common intermediate. Neutral deprotection at the final step enabled easy purification of tetrodotoxin and 11‐norTTX‐6(R )‐ol without competing dehydration to their 4,9‐anhydro forms.  相似文献   

4.
Franchetine, a unique 7,17‐seco type of norditerpenoid alkaloid, possesses a highly congested polycyclic architecture coupled with nine stereogenic centers. Here we present an efficient synthetic approach for the intact hexacyclic framework of franchetine from the known tricyle 16 in 20 steps. The synthesis features a diastereoselective 6‐exo‐tet radical cyclization for construction of ring A and a unique oxidative Wagner–Meerwein‐type rearrangement to realize the functionalized [3.2.1] bridging ring CD.  相似文献   

5.
Two convergent total syntheses of the ansa‐polyketide (?)‐kendomycin ( 1 ) are described. The syntheses benefit from the use of readily available and cheap starting materials. Highly complex diastereoselective Claisen–Ireland rearrangements were used to introduce the (E)‐double bond and the C16‐Me group. The ring closure of the strained ansa macrocycle was achieved by ring‐closing metathesis and a highly efficient combination of macrolactonization and photo‐Fries reaction. A protecting group free endgame via an unstable o‐quinone is presented. Additionally some unsuccessful synthetic efforts towards the total synthesis of 1 are described.  相似文献   

6.
An efficient, diastereoselective synthesis of substituted and unsubstituted 2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters has been developed based on the tandem reduction‐reductive amination reac tion. Catalytic hydrogenation of a series of 2‐(2‐nitrophenyl)‐5‐oxoalkanoic esters initiates a reaction sequence involving (1) reduction of the aromatic nitro group, (2) condensation of the N‐hydroxylamino (or amino) nitrogen with the side chain carbonyl, and (3) reduction of the seven‐membered cyclic imine. Cyclizations that produce 2‐alkyl‐2,3,4,5‐tetrahydro‐1H‐1‐benzazepine‐5‐carboxylic esters are diastereose lective for the product having the C2 alkyl and the C5 ester groups cis. In these reactions, the transannular ester group exerts a strong stereodirecting effect on the reduction of the cyclic imine intermediate, though not as strong as that observed in previous closures of 2‐alkyl‐1,2,3,4‐tetrahydroquinoline‐4‐carboxylic esters. This decrease in diastereoselectivity is attributed to (1) the greater distance between the ester and the imine double bond and (2) the increased conformational mobility of the larger ring, both of which diminish the stereodirecting effect of the ester. Finally, formation of the seven‐membered ring is sufficiently slow that reaction with the side chain ester group competes with heterocycle formation in several of the reactions.  相似文献   

7.
A highly diastereoselective and practical biomimetic total synthesis of (±)‐basiliolide B has been achieved through the study of the two proposed biosynthetic pathways (O‐methylation and O‐acylation) for the unprecedented 7‐methoxy‐4,5‐dihydro‐3H‐oxepin‐2‐one (C ring). The synthesis featured a cyclopropanation/ring opening strategy for establishing the stereogenic centers at C8 and C9, a biomimetic 2‐pyrone Diels–Alder cycloaddition for the synthesis of the ABD ring system, and finally a highly efficient biomimetic intramolecular O‐acylation for the C ring formation. This result provides an important perspective on the biosynthetic origin of the unprecedented 7‐membered acyl ketene acetal moiety of the C ring.  相似文献   

8.
The catalytic diastereodivergent construction of stereoisomers having two or more stereogenic centers has been extensively studied. In contrast, the switchable introduction of another stereogenic element, that is, Z/E configuration involving a polysubstituted alkene group, into the optically active stereoisomers, has not been recognized yet. Disclosed here is the pseudo‐stereodivergent synthesis of highly enantioenriched tetrasubstituted alkene architectures from isatin‐based Morita–Baylis–Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3‐oxo‐allylation reaction between N‐allylic ylides and chiral π‐allyliridium complex intermediates by ligand and substrate control, followed by the stereoselective concerted 3,3‐Cope rearrangement process.  相似文献   

9.
We describe a flexible and divergent route to the pyrrolo‐/pyrido[1,2‐j]quinoline frameworks of tricyclic marine alkaloids via a common intermediate formed by the ester–enolate Claisen rearrangement of a cyclic amino acid allylic ester. We have synthesized the proposed structure of polycitorols and demonstrated that the structure of these alkaloids requires revision. In addition to asymmetric formal syntheses, stereoselective and concise total syntheses of (?)‐lepadiformine and (?)‐fasicularin were also accomplished from simple, commercially available starting materials in a completely substrate‐controlled manner. The key step in these total syntheses was the reagent‐dependent stereoselective reductive amination of the common intermediate to yield either indolizidines 55 a or 55 b . Aziridinium‐mediated carbon homologation of the hindered C‐10 group to the homoallylic group facilitated the synthesis.  相似文献   

10.
A concise synthesis of racemic Tapentadol and its stereoisomers was presented. The key step was a TiCl4·THF2‐catalzyed aza‐Belluš‐Claisen rearrangement to create two vicinal tertiary carbon stereogenic centers. The subsequent reduction of amide and hydrogenation of alkene delivered Tapentadol and its stereoisomers. The current approach offers a practical synthetic route to access this class of pharmaceutically significant molecules.  相似文献   

11.
A total synthesis of the anticancer natural product (+)‐trans‐dihydrolycoricidine is reported from α‐azidoacetone and cinnamaldehyde precursors. Key elements include an asymmetric organocatalytic sequence proceeding by a regiospecific secondary‐amine‐catalyzed syn Michael addition followed by an intramolecular aldol reaction. The sequence results in the formation of an advanced intermediate, containing three stereogenic centers, in one step which and was converted into the title compound in eight steps.  相似文献   

12.
An efficient dearomatization process of [Cr(arene)(CO)3] complexes initiated by a nucleophilic acetaldehyde equivalent is detailed. It generates in a one‐pot reaction three C? C bonds and two stereogenic centers. This process allowed a rapid assembly of a cis‐decalin ring system incorporating a homoannular diene unit in just two steps starting from aromatic precursors (Scheme 2). The method was applied to the total synthesis of the eudesmane‐type marine furanosesquiterpene (±)‐15‐acetoxytubipofuran ( 2 ). Two routes were successfully used to synthesize the γ‐lactone precursor of the furan ring. The key step in the first approach was a Pd‐catalyzed allylic substitution (Scheme 3), while in the second approach, an Eschenmoser–Claisen rearrangement was highly successful (Scheme 4). The Pd‐catalyzed allylic substitution could be directed to give either the (normal) product with overall retention as major diastereoisomer or the unusual product with inversion of configuration (see Table). For the synthesis of the (?)‐enantiomer (R,R)‐ 2 of 15‐acetoxytubipofuran, an enantioselective dearomatization in the presence of a chiral diether ligand was implemented (Scheme 7), while the (+)‐enantiomer (S,S)‐ 2 was obtained via a diastereoselective dearomatization of an arene‐bound chiral imine auxiliary (Scheme 8). Chiroptical data suggest that a revision of the previously assigned absolute configuration of the natural product is required.  相似文献   

13.
A new diastereoselective route to 2‐aminotetrahydrofurans has been developed from N,O‐dialkenylhydroxylamines. These intermediates undergo a spontaneous C?C bond‐forming [3,3]‐sigmatropic rearrangement followed by a C?O bond‐forming cyclization. A copper‐catalyzed N‐alkenylation of an N‐Boc‐hydroxylamine with alkenyl iodides, and a base‐promoted addition of the resulting N‐hydroxyenamines to an electron‐deficient allene, provide modular access to these novel rearrangement precursors. The scope of this de novo synthesis of simple nucleoside analogues has been explored to reveal trends in diastereoselectivity and reactivity. In addition, a base‐promoted ring‐opening and Mannich reaction has been discovered to covert 2‐aminotetrahydrofurans to cyclopentyl β‐aminoacid derivatives or cyclopentenones.  相似文献   

14.
An unprecedented tandem N‐alkylation–ionic aza‐Cope (or Claisen) rearrangement–hydrolysis reaction of readily available indolyl bromides with enamines is described. Due to the complicated nature of the two processes, an operationally simple N‐alkylation and subsequent microwave‐irradiated ionic aza‐Cope rearrangement–hydrolysis process has been uncovered. The tandem reaction serves as a powerful approach to the preparation of synthetically and biologically important, but challenging, 2‐reverse quaternary‐centered prenylated indoles with high efficiency. Notably, unusual nonaromatic 3‐methylene‐2,3‐dihydro‐1H‐indole architectures, instead of aromatic indoles, are produced. Furthermore, the aza‐Cope rearrangement reaction proceeds highly regioselectively to give the quaternary‐centered reverse prenyl functionality, which often produces a mixture of two regioisomers by reported methods. The synthetic value of the resulting nonaromatic 3‐methylene‐2,3‐dihydro‐1H‐indole architectures has been demonstrated as versatile building blocks in the efficient synthesis of structurally diverse 2‐reverse prenylated indoles, such as indolines, indole‐fused sultams and lactams, and the natural product bruceolline D.  相似文献   

15.
The organocatalytic activation of Morita–Baylis–Hillman alcohols via H‐bonding‐iminium‐ion formation is demonstrated for the first time. This activation strategy enables the Morita‐Baylis–Hillman alcohols to undergo a formal SN2′ reaction. In combination with the well‐established enamine reactivity, this creates a new reactivity pattern. The application of this new activation mode for the synthesis of bicyclic α‐alkylidene‐ketones is demonstrated. The developed reaction sequence proceeds efficiently affording nature‐inspired target products with four contiguous stereogenic centers in a highly stereoselective manner.  相似文献   

16.
Highly concise asymmetric total syntheses of (+)‐tetrabenazine ( 1 ), a drug for the treatment of chorea associated with Huntington’s disease, and of (+)‐α‐dihydrotetrabenazine ( 2 ), an active metabolite of 1 , have been accomplished. Our synthetic route features a trans‐selective enol etherification, followed by an unprecedented cation‐dependent aza‐Claisen rearrangement to establish the carbon framework and two stereogenic centers of tetrabenazine. The syntheses consist of seven steps (34 % overall yield) for (+)‐ 2 and eight steps (22 % overall yield) for (+)‐ 1 .  相似文献   

17.
(?)‐Hybridalactone ( 1 ) is a marine eicosanoid isolated from the red alga Laurencia hybrida. This natural product contains cyclopropane, cyclopentane, 13‐membered macrolactone and epoxide ring systems incorporating seven stereogenic centers. Moreover, this compound has an acid‐labile skipped Z,Z‐diene motif. In this paper, we report on the total synthesis of (?)‐hybridalactone ( 1 ). The unique eicosanoid (?)‐hybridalactone ( 1 ) was synthesized starting from optically active γ‐butyrolactone 2 in a linear sequence comprising 21 steps with an overall yield of 21.9 %. A key step in the synthesis of (?)‐hybridalactone ( 1 ) is the methyl phenylsulfonylacetate‐mediated one‐pot synthesis of the cis‐cyclopropane‐γ‐lactone derivative. This reaction provided an efficient and stereoselective access to cis‐cyclopropane‐γ‐lactone 12 . Further elaboration of the latter compounds through desulfonylation, epoxidation, oxidation, Wittig olefination and Shiina macrolactonization afforded (?)‐hybridalactone.  相似文献   

18.
Approaches toward the preparative‐scale synthesis of target 3,4‐dihydro‐1(2H)‐isoquinolinones 1–3 are presented. Compounds 1 and 2 were prepared via a Schmidt rearrangement on easily obtained indanone precursors, but in low overall yield. A better method to make this class of compounds is exemplified by the large‐scale synthesis of 2 via a Curtius rearrangement sequence. Thus, high‐temperature thermal cyclization of an in situ formed styryl isocyanate from precursor 8 in the presence of tributylamine gave the corresponding 1(2H)‐isoquinolinone ( 9 ). Catalytic hydrogenation of 9 provided the desired 3,4‐dihydro‐5‐methyl‐1(2H)‐isoquinolinone ( 2 ) in 65 % overall yield. Similar reduction of a commercially available 5‐hydroxy‐1(2H)‐isoquinolinone precursor 10 followed by an O ‐alkylation/amination sequence gave target 3 in good overall yield. The route proceeding via the Curtius rearrangement is recommended for large scale synthesis of other 3,4‐dihydro‐1(2H)‐isoquinolinones. Only when deactivating substituents or sensitive functionality within the benzenoid ring render the high temperature ring closure of the intermediate isocyanate inefficient might a Schmidt rearrangement protocol be the method of choice.  相似文献   

19.
A highly efficient 12‐step synthesis of the marine alkaloid (?)‐nakadomarin A has been accomplished. The key advanced intermediate, a tetracyclic ketone derivative, was constructed in just seven steps using a sequence that includes an asymmetric Pauson–Khand reaction, an Overman rearrangement reaction, a ring‐closing metathesis reaction, and an amination reaction. Late introduction of the furan ring during the synthesis of (?)‐nakadomarin A means that the key tetracyclic ketone derivative has the potential to serve as an advanced intermediate for the synthesis of related marine alkaloids.  相似文献   

20.
Diarylmethylamines are key intermediates and products in the pharmaceutical industry. Herein we disclose a novel method toward the synthesis of these important compounds via C?H functionalization. Presented is a reversible deprotonation of N‐Boc benzylalkylamines at the benzylic C?H with in situ arylation by a NiXantPhos‐based palladium catalyst (50–93 % yield, 29 examples). The method is also successful with N‐Boc‐tetrahydroisoquinolines. The advantages of this method are it avoids strong bases, low temperatures, and the need to transmetallate to main group metals for the coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号