首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino‐reactive sites (NHS esters or mixed N‐succinimidyl carbonates) are reported. All fluorophores contain an N‐alkyl‐1,2‐dihydro‐2,2,4‐trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635–639 and 655–659 nm, respectively. A vastly simplified approach to red‐emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N‐hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino‐reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono‐N‐hydroxysuccinimidyl ester from 5‐carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92 % for free fluorophores, and amounted to 18–64 % for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two‐color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two‐color channels with low cross‐talk and negligible background at approximately 40 nm resolution.  相似文献   

2.
Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as “hidden” markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2‐diazo‐1‐indanone group can be irreversibly photoactivated, either by irradiation with UV‐ or violet light (one‐photon process), or by exposure to intense red light (λ~750 nm; two‐photon mode). All dyes possess a very small 2‐diazoketone caging group incorporated into the 2‐diazo‐1‐indanone residue with a quaternary carbon atom (C‐3) and a spiro‐9H‐xanthene fragment. Initially they are non‐colored (pale yellow), non‐fluorescent, and absorb at λ=330–350 nm (molar extinction coefficient (ε)≈104 M?1 cm?1) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511–633 and 525–653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε= 3–8×104 M?1 cm?1 and fluorescence quantum yields (?)=40–85 % in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water‐soluble caged red‐emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino‐reactive N‐hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375–420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3–6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (?=20–38 %). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10–40 % of the non‐fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a “dark” non‐emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super‐resolution optical microscopy is exemplified.  相似文献   

3.
The design, synthesis, and evaluation of new rhodamine spiroamides are described. These molecules have applications in optical nanoscopy based on random switching of the fluorescent single molecules. The new markers may be used in (co)localization studies of various objects and their (mutual) positions and shape can be determined with a precision of a few tens of nanometers. Multicolor staining, good photoactivation, a large number of emitted photons, and selective chemical binding with amino or thiol groups were achieved due to the presence of various functional groups on the rhodamine spiroamides. Rigidized sulfonated xanthene fragment fused with six‐membered rings, N,N′‐bis(2,2,2‐trifluoroethyl) groups, and a combination of additional double bonds and sulfonic acid groups with simple aliphatic spiroamide residue provide multicolor properties and improve performance of the rhodamine spiroamides in photoactivation and bioconjugation reactions. Having both essential parts of the photoswitchable assembly—the switching and the fluorescent (reporter) groups—combined in one chemical entity make this approach attractive for further development. A series of rhodamine spiroamides is presented along with characterizations of their most relevant properties for application as fluorescent probes in single‐molecule switching and localization microscopy. Optical images with resolutions on the nanometer scale illustrate the potential of the labels in the colocalization of biological objects and the two‐photon activation technique with optical sectioning.  相似文献   

4.
The rhodamine system is a flexible framework for building small‐molecule fluorescent probes. Changing N‐substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si‐containing analogue of Q‐rhodamine. This probe is the first example of a “caged” Si‐rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red‐shifted to allow multicolor imaging. The dye is a useful label for super‐resolution imaging and constitutes a new scaffold for far‐red fluorogenic molecules.  相似文献   

5.
Formylation of 2,6-dichloro-5-R-nicotinic acids at C-4 followed by condensation with 3-hydroxy-N,N-dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6-dichloro-5-R-nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with “small molecules” provided specific labeling (covalent and non-covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two-color STED microscopy with a 775 nm STED laser.  相似文献   

6.
Long wavelength voltage-sensitive dyes (VSDs) called Pittsburgh (PGH) dyes were recently synthesized by coupling various heterocyclic groups to a styryl-thiophene intermediate forming extended, partially rigid chromophores. Unlike most styryl VSDs, dyes with a sulfonic acid anchor directly attached to the chromophore showed no solvatochromic absorption shifts. The limited water solubility of many long wavelength VSDs requires the use of surfactants to transport the dye through physiological saline solutions and effectively label biological membranes. Here, we tested the chemical substitution of the sulfonic acid moiety with polyethyleneglycol (PEG) chains, ranging from MW 750 to 5000, to overcome the poor solubility of VSDs while retaining their properties as VSDs. The chemical synthesis of PGH dyes and their PEG derivatives are described. The PEG derivatives were soluble in aqueous solutions (>1 mM) and still reported membrane potential changes. In frog and mouse hearts, the voltage sensitivity (DeltaF/F per action potential) and spectral properties of PEG dyes were the same as the sulfonated analogues. Thus, the solubility of VSDs can be considerably improved with small polyethyleneglycol chains and can provide an effective approach to improve staining of excitable tissues and optical recordings of membrane potential.  相似文献   

7.
Bulky hydrophobic counterions (weakly coordinating anions) can insulate ionic dyes against aggregation-caused quenching (ACQ) and enable preparation of highly fluorescent dye-loaded nanoparticles (NPs) for bioimaging, biosensing and light harvesting. Here, we introduce a family of hydrophobic anions based on fluorinated C-acyl barbiturates with delocalized negative charge and bulky non-polar groups. Similarly to fluorinated tetraphenylborates, these barbiturates prevent ACQ of cationic dye alkyl rhodamine B inside polymer NPs made of biodegradable poly(lactic-co-glycolic acid) (PLGA). Their efficiency to prevent ACQ increases for analogues with higher acidity and bulkiness. Their structure controls dye-dye communication, yielding bright NPs with on/off switching or stable emission. They enhance dye encapsulation inside NPs, allowing intracellular imaging without dye leakage. Compared to fluorinated tetraphenylborates known as cytotoxic transmembrane ion transporters, the barbiturates display a significantly lower cytotoxicity. These chemically available and versatile barbiturate derivatives are promising counterion scaffolds for preparation of bright non-toxic fluorescent nanomaterials.  相似文献   

8.
随着纳米技术的发展,结合了纳米技术与材料制备技术而发展起来的荧光染料嵌合的核壳荧光纳米颗粒的制备为生物医学领域的研究提供了新的材料、技术和方法。何晓晓等以联钉吡啶配合物为核材料,制备了嵌合无机金属配合物的核壳荧光纳米颗粒,段菁华等用异硫氰酸荧光素FITC与蛋白质IgG相结合,  相似文献   

9.
We report on the formation of the polycation/dye/polyanion (PC/D/PA) complexes by the interaction between nonstoichiometric polycation/dye (PC/D) complexes with polyanions. Polycations differed in their content of the (N,N‐dimethyl‐2‐hydroxypropylene ammonium chloride) units in the main chain. Poly(sodium acrylate) (NaPA), poly(sodium 2‐acrylamido‐2‐methylpropane sulfonate) (NaPAMPS) and poly(sodium styrenesulfonate) (NaPSS) were used as polyanions. Crystal Ponceau 6R (CP6R) and Ponceau 4R (P4R) with two or three sulfonic groups were used as anionic dyes. The interaction between nonstoichiometric PC/D complexes and polyanions was followed by UV‐VIS spectroscopy, viscometry, and conductometry measurements. Formation of PC/D/PA complexes takes place mainly by the electrostatic interaction between the polyanion and the free positive charges of the nonstoichiometric PC/D complex. The stoichiometry and the stability of the tricomponent complexes depended on the polycation structure, the structure and molecular weight of polyanion, the dye structure, and the P/D molar ratio. A high amount of the dye was excluded from the complex before the end point when a branched polycation was used. The higher the solubility of the dye the lower the stability of the PC/D/PA complexes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 409–418, 1999  相似文献   

10.
A set of new azide‐ and alkyne‐bearing lepidinium‐based fluorophores were synthesized for bioorthogonal labeling schemes. These fluorescent dyes all show large Stokes‐shifts with emission maxima in the near‐infrared (NIR) region of the electromagnetic spectrum. The applicability of these dyes in the construction of energy‐transfer systems was tested using one of these new fluorescent tags and daunomycin (Dau), an anticancer drug with fluorescent features. These daunomycin conjugates are the very first examples of fluorescently modulated constructs of this anticancer agent. The dually labeled architectures proved that the applied fluorescent dye can be utilized as an efficient quencher for daunomycin. Enzymatic cleavage of a dually labeled enzyme substrate resulted in full recovery of the fluorescence of daunomycin. Such fluorescently modulated Dau conjugates can provide useful information for the mechanism of action of Dau‐regulated cell death processes.  相似文献   

11.
Two‐photon microscopy is a powerful tool for studying biological systems. In search of novel two‐photon absorbing dyes for bioimaging, we synthesized a new anthracene‐based dipolar dye (anthradan) and evaluated its two‐photon absorbing and imaging properties. The new anthradan, 9,10‐bis(o‐dimethoxy‐phenyl)‐anthradan, absorbs and emits at longer wavelengths than acedan, a well‐known two‐photon absorbing dye. It is also stable under two‐photon excitation conditions and biocompatible, and thus used for two‐photon imaging of mouse organ tissues to show bright, near‐red fluorescence along with negligible autofluorescence. Such an anthradan thus holds promise as a new class of two‐photon absorbing dyes for the development of fluorescent probes and tags for biological systems.  相似文献   

12.
IntroductionAs is known,textile wastewater is a troubleindustrial wastewater due to its environment pollu-tion caused by its deep color,huge amounts,highCODcrand BOD5,as well as itsdifficultdegradationby biodegradation[1— 3 ] .Fenton reagent[4— 6] has a high redox potential,2 .8V. Recently,the Fenton reagent used as anoxidant to treat toxic organic wastewater such aswood glue,lead trinitroresorcinate and textilewastewater has been reported.Although hydroxylradical can be generated by a c…  相似文献   

13.
The voltammetric behaviour of four azo dyes has been compared at a glassy carbon electrode. It is shown that the azo dyes (e.g. Reactive Brilliant Red x‐3b (RBR x‐3b), Acid Red 6b (AR 6b)) with a hydroxyl group in the ortho position with respect to the azo bridge give rise to well defined, irreversible peaks for the oxidation and reduction process within a pH range of 2–12. In the case of the non‐hydroxyl azo dye (e.g. Reactive Yellow x‐rg (RY x‐rg)), or azo dye with a meta hydroxyl group (e.g. Reactive Orange x‐gn (RO x‐gn)), the oxidation was comparatively tougher, and the peak was not clear or even invisible in the accessible potential range. The mechanism of electrochemical oxidation of RBR x‐3b, as well as AR 6b is proposed. The reduction steps were only accessible when pH < 8 for RY x‐rg and RO x‐gn dye compounds. For the hydroxyl‐substituted dyes, re‐oxidation peaks were obtained in the subsequent scan, owing to the oxidation of reduction products‐amine or hydroazo intermediates.  相似文献   

14.
Members of a series of boron difluoride complexes with 3‐(heteroaryl)‐2‐iminocoumarin ligands bearing both a phenolic hydroxyl group (acting as a fluorogenic center) and an N‐aryl substituent (acting as a stabilizing moiety) have been synthesized in good yields by applying a straightforward two‐step method. These novel fluorogenic dyes belong to the family of “Boricos” (D. Frath et al., Chem. Commun.­ 2013 , 49, 4908–4910) and are the first examples of phenol‐based fluorophores of which the photophysical properties in the green‐yellow spectral range are dramatically improved by N,N‐chelation of a boron atom. Modulation of their fluorescence properties through reversible chemical modification of their phenol moieties has been demonstrated by the preparation of the corresponding 2,4‐dinitrophenyl (DNP) ethers, which led to a dramatic “OFF‐ON” fluorescence response upon reaction with thiols. Additionally, to expand the scope of these “7‐hydroxy‐Borico” derivatives, particularly in biolabeling, amine or carboxylic acid functionalities amenable to (bio)conjugation have been introduced within their scaffold. Their utility has been demonstrated in the preparation of fluorescent bovine serum albumin (BSA) conjugates and “Borico”‐DOTA‐like scaffolds in an effort to design novel monomolecular multimodal fluorescence‐ radioisotope imaging agents.  相似文献   

15.
A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.  相似文献   

16.
Fluorescence anisotropy in the near‐infrared (NIR) spectral range is challenging because of the lack of appropriate NIR fluorescent labels. We have evaluated polymethine fluorescent dyes to identify a leading candidate for NIR anisotropy applications. The NIR dye LS601 demonstrated low fluorescence anisotropy values (r) as a result of its relatively long fluorescent lifetime 1.3 ns. The r value of LS601 unbound and coupled to biological macromolecules was found to have a sufficient dynamic range from 0.24 to 0.37, demonstrating the feasibility of fluorescence anisotropy in the NIR. The viability of fluorescence anisotropy using a NIR label was demonstrated by characterization of dye–protein conjugates. These results open the door to a number of applications in drug discovery, fluorescence anisotropy imaging and contrast agent development.  相似文献   

17.
In this study, novel water‐soluble corrole amino acid conjugates were synthesized and characterized. The coupling reaction of A2B‐ and A3‐corroles with glycine ethyl ester and taurine under strong basic conditions proved to be successful and yielded di‐ and trifunctionalized corrole amino acid conjugates in good yields. The subsequent metalation of the corrole/amino acid conjugates broadens the scope for applications considerably. As examples, we herein show the catalytic activity of the Mn(III) A3‐corrole towards O2 evolution. First we employed tert‐butyl hydroperoxide (t‐BuOOH) as oxidant to obtain the Mn(V)oxo species and tetrabutyl ammonium hydroxide (TBAH) as hydroxide donor agent. Furthermore, the binding properties of the non‐metalated and the Mn(III) A3‐corrole/amino sulfonic acid conjugates and transport of proteins were investigated and the conjugates exhibited binding to human serum albumin (HSA). Finally, a novel Ga(III) A3‐corrole/amino sulfonic acid derivative was synthesized and we briefly describe the photophysical properties of this compound. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A water‐based narrow‐band high‐efficiency dye laser was designed by means of a supramolecular host–guest chemical approach. The lasing characteristics of rhodamine B and sulforhodamine B (Kiton Red S) dyes in aqueous solution with the macrocyclic host cucurbit[7]uril (CB7) as additive were investigated in a narrow‐band dye laser setup. Significant improvements in both photostability and thermo‐optical properties of the aqueous CB7‐complexed dye systems were observed as compared to the uncomplexed dyes in ethanol solution. The tuning curves for the new dye–CB7–water systems were constructed by measuring the laser output at different wavelengths, which showed similar peak efficiencies and red‐shifted gains compared to the ethanolic solutions of the dyes, while dye laser operation revealed comparable pump threshold energies and slope efficiencies. The combined results render the dye–CB7–water system an attractive active medium for high‐repetition rate dye laser operation.  相似文献   

19.
Si‐rhodamine (SiR) is an ideal fluorophore because it possesses bright emission in the NIR region and can be implemented flexibly in living cells. Currently, several promising approaches for synthesizing SiR are being developed. However, challenges remain in the construction of SiR containing functional groups for bioimaging application. Herein, we introduce a general and simple approach by a condensation reaction of diarylsilylether and arylaldehyde in o‐dichlorobenzene to synthesize a series of SiRs bearing various functional substituents. These SiRs have moderate to high quantum efficiency, tolerance to photobleaching, and high water solubility as well as NIR emitting, and their NIR fluorescence properties can be controlled through the photoinduced electron transfer (PET) mechanism. Fluorescence OFF‐ON switching effect is observed for SiR 9 in the presence of acid, which is rationalized by DFT/TDDFT calculations. Moreover, reversible stimuli response toward temperature is achieved. Since positive charge enables mitochondrial targeting ability and chloromethyl unit can covalently immobilize the dyes onto the mitochondrial via click reaction between the benzyl choride and protein sulfhydryls, SiR 8 is identified as a valuable fluorescent marker to visualize the morphology and monitor the temperature change of mitochondria with high photostability.  相似文献   

20.
Common cationic dyes used for laser and fluorescent probes present low solubility in water. In order to increase the dye concentration in aqueous solutions, anionic surfactant can be added. The strong interaction between anionic surfactant and cationic dye can affect drastically the dye absorption and fluorescence properties. Here we observed that the fluorescence of the species in aqueous solution is maximized at condition of complete micellization of surfactants at critical micelle concentration (CMC). In addition, combined measurements of absorption, emission and fluorescence lifetime provide fundamental information on the critical concentration of H-aggregates formation and monomer separation, induced by pre-micelles and homomicelles on different surfactant sodium dodecylsulphate (SDS) concentration. The experimental results show how to find precisely the critical concentration of H-aggregates by optical method in two different xanthene-derived molecules: rhodamine 6G and rhodamine B. The adequate transference of electron from excited dye to the conduction band of semiconductor (TiO2) promotes the creation of reactive species that provides the degradation of dye with advantage of use of irradiation in the visible region and strong photobleaching with direct exposure to the visible light irradiation in a scale of time of 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号