首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of the palladium(II) complex [Pd(hzpy)(H2O)2]2+, where hzpy is 2‐hydrazinopyridine, with purine nucleoside adenosine 5′‐monophosphate (5′‐AMP) was studied kinetically under pseudo‐first‐order conditions, using stopped‐flow techniques. The reaction was found to take place in two consecutive reaction steps, which are both dependent on the actual 5′‐AMP concentration. The activation parameters for the two reaction steps, i.e. ΔH = 32 ±2 kJ mol?1, ΔS = ?168 ±7 J K?1 mol?1, and ΔH = 28 ± 1 kJ mol?1, ΔS = ?126 ± 5 J K?1 mol?1, respectively, were evaluated and suggested an associative mode of activation for both substitution processes. The stability constants and the associated speciation diagram of the complexes were also determined potentiometrically. The isolated solid complex was characterized by C, H, and N elemental analyses, IR, magnetic, and molar conductance measurements. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 132–142, 2010  相似文献   

2.
Poly(acrylonitrile‐co‐itaconic acid) (poly(AN‐co‐IA)) precursor required for carbon fiber production is made into a dope and spun into fibers using a suitable spinning technique. The viscosity of the resin dope is decided by the polymer concentration, polymer molecular weight, temperature, and shear force. The shear rheology of concentrated poly(AN‐co‐IA) polymer solutions in N,N‐dimethylformamide (DMF), in the range of 1 × 105–1 × 106 g mol?1, has been investigated in the shear rate (γ′) range of 1 × 101–5 × 104 min?1. The zero shear viscosity (η0) has been evaluated at different temperatures. The temperature dependence of zero shear viscosity conformed to the Arrhenius–Frenkel–Eyring model. The free energy of activation of viscous flow (ΔGV) values were in the range 5–32 kJ mol?1 and this value increased with increase in polymer concentration and molecular weight. A master equation for the ΔGV value of the polymer solution of any and concentration (c) is suggested. The power law fitted well for the shear dependency of viscosity of these polymer solutions. The pseudoplasticity index (n) diminished with increase in polymer concentration and molecular weight. An empirical relation between viscosity (η) and was found to exist at constant shear rate, concentration and temperature. For each , the equation relating n, c, and T was established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Ab initio calculations at the CCSD(T)/6‐311++G(2d,p)//B3LYP/6‐311++G(d,p) level of theory have been carried out for three prototypical rearrangement processes of organosilicon anion systems. The first two are reactions of enolate ions which involve oxygen–silicon bond formation via three‐ and four‐membered states, respectively. The overall reactions are: The ΔG (reaction) values for the two processes are +175 and +51 kJ mol?1, with maximum barriers (to the highest transition state) of +55 and +159 kJ mol?1, respectively. The third studied process is the following: (CH3O)C(?CH2)Si(CH3)2CH → (CH3)2(C2H5)Si? + CH2CO, a process involving an SNi reaction between ‐CH and CH3O‐ followed by silicon–carbon bond cleavage. The reaction is favourable [ΔG(reaction) = ?39 kJ mol?1] with the barrier for the SNi process being 175 kJ mol?1. The previous experimental and the current theoretical data are complementary and in agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Geometry, thermodynamic, and electric properties of the π‐EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6‐31G* and, partly, DFT‐D/6‐31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB–TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10?10 m and the corresponding BSSE corrected interaction energy is ?51.3 kJ mol?1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2–TCNE and HMB–TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10?10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06–3.16 × 10?10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB–TCNE complex formation in gas phase are: ΔH0 = ?61.59 kJ mol?1, ΔS = ?143 J mol?1 K?1, ΔG0 = ?18.97 kJ mol?1, and K = 2,100 dm3 mol?1. Experimental data, however, measured in CCl4 are significantly lower: ΔH0 = ?34 kJ mol?1, ΔS = ?70.4 J mol?1 K?1, ΔG0 = ?13.01 kJ mol?1, and K = 190 dm3 mol?1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol?1 which is very close to our PCM value 6.5 kJ mol?1. MP2/6‐31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6‐31G* study supplemented by DFT‐D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of π‐EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
A series of random copolymers and block copolymers containing water‐soluble 4AM and fluorescent VAK are synthesized by NMP. The homopolymerizations of 4AM and VAK and 4AM/VAK random copolymerization are performed in 50 wt% DMF using 10 mol% SG1, resulting in a linear increase in versus conversion, and final polymers with narrow molecular weight distributions ( < 1.4). Reactivity ratios rVAK = 0.64 ± 0.52 and r4AM = 0.86 ± 0.66 are obtained for the 4AM/VAK random copolymerization. In addition, a poly(4AM) macroinitiator is used to initiate a surfactant‐free suspension polymerization of VAK. After 2.5 h, the resulting amphiphilic block copolymer has = 12.6 kg · mol?1, = 1.48, molar composition FVAK = 0.38 with latex particle sizes between 270 and 475 nm.

  相似文献   


6.
Macrocyclic and polymeric imines 5,5′ and 6,6′ are obtained in excellent yields by template‐free polycondensation of 1,6‐bis(4‐formylbenzoyloxy)hexane (1) with commercially available 4,4′‐methylene‐bis(cyclohexylamine) (2) and with bis(2‐amino‐2‐methylprop‐1‐yl)adipate dihydrochloride (4), respectively. The degree of macrocyclization during imine synthesis strongly depends on the diamine. Matrix‐assisted laser desorption–ionization time‐of‐flight (MALDI‐TOF) mass spectrometry analysis and gel permeation chromatography (GPC) measurements show that (2) leads to more macrocyclic adducts than (4). The subsequent meta‐chloroperoxybenzoic acid oxidation of polyimines 5,5′ and 6,6′ ( = 1650–11 200 g mol−1, = 3800–27 350 g mol−1) yields the corresponding polyoxaziridines 7,7′ and 8,8′ consisting of macrocyclic and linear polymeric structures ( = 1750–8050 g mol−1, = 3250–15 800 g mol−1). The synthesized polyoxaziridines are relatively stable and storable at room temperature.  相似文献   

7.
The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐Mo(CN) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping Mo(CN) mediator in the cationic film of glutaraldehyde‐cross‐linked poly‐L ‐lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer in the film was a mixed process at low scan rates (5 to 200 mV s?1), and kinetically restrained at higher scan rates (200 to 1000 mV s?1). Cyclic voltammetry and rotating disk electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL‐GA film coated electrodes. The rate constant of catalytic reaction k obtained from RDE analysis was found to be 9.5×105 cm3 mol?1 s?1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 75 μA mM?1. Amperometric estimation of AA in stirred solution shows a sensitivity of 15 μA mM?1 over the linear concentration range between 50 and 1200 μM. Interestingly, PLL‐GA‐Mo(CN) modified electrode facilitated the oxidation of ascorbic acid but not responded to other electroactive biomolecules such as dopamine, uric acid, NADH, glucose. This unique feature of PLL‐GA‐Mo(CN) modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in the presence of interferents.  相似文献   

8.
Dilute mixtures of 4-methyl-l-pentyne have been pyrolyzed in a single-pulse shock tube. The decomposition process involves bond breaking: as well as a molecular reaction: The rate parameters are: The heat of formation of propynyl radical is thus ΔHf300 = 338 kJ mol?1 (80.7 kcal mol?1)˙ This leads to a propynyl resonance energy of 40 kJ mol?1 (9.6 kcal mol?1).  相似文献   

9.
Variable temperature FT–IR spectroscopy (in the range of 298–380 K) is used to study the thermodynamics of formation of Ca2+???CO carbonyl species upon CO adsorption on the faujasite‐type zeolite Ca–Y, and also the (temperature‐dependent) isomerization equilibrium between carbonyl and isocarbonyl (Ca2+???OC) species. The standard enthalpy and entropy changes involved in formation of the monocarbonyl species resulted to be ΔH0=?50.3 (±0.5) kJ mol?1 and ΔS0=?186 (±5) J mol?1 K?1, respectively. Isomerization of the (C‐bonded) Ca2+???CO carbonyl to yield the (O‐bonded) Ca2+???OC isocarbonyl involves an enthalpy change =+11.4 (±1.0) kJ mol?1. These results are compared with previously reported data for the CO/Sr–Y system; and also, a brief analysis of enthalpy–entropy correlation for CO adsorption on zeolites and metal oxides is given.  相似文献   

10.
We report herein some outstanding examples of atropisomerism and tautomerism in five (meso‐)strapped porphyrins. Porphyrins S0 – S4 have been synthesised, characterised and studied in detail by spectroscopic and spectrometric techniques, and their isomeric purity verified by HPLC analysis. In particular, they exhibit perfectly well‐defined NMR spectra that display distinct patterns depending on their average symmetry at room temperature: C2v, D2d, C2h, C2v, and D2h for S0 – S4 , respectively. NH tautomerism was evidenced by variable‐low‐temperature 1H NMR experiments in [D2]dichloromethane performed on S0 (Δ${G{{{\ne}\hfill \atop {\rm 298K}\hfill}}}$ =48±1 kJ mol?1) and S1 (Δ${G{{{\ne}\hfill \atop {\rm 298K}\hfill}}}$ =55±3 kJ mol?1), which has led to an understanding of the average spectra observed for the five porphyrins at room temperature. On the other hand, S2 and S3 are stable atropisomers at room temperature, easily separated and characterised, as a result of restricted rotation of their strapped bridges due to their high rotational barrier energies. Upon heating to 82 °C, they slowly equilibrate to a thermodynamic ratio of 64:36 in favour of the more stable S2 isomer. This atropisomerisation process was evidenced by 1H NMR spectroscopy and monitored by HPLC, from which high rotational energy barriers of 115.2 (Δ${G{{{\ne}\hfill \atop {\rm S2}\rightarrow {\rm S3}\hfill}}}$ ) and 116.9 kJ mol?1 (Δ${G{{{\ne}\hfill \atop {\rm S2}\rightarrow {\rm S3}\hfill}}}$ ) were deduced.  相似文献   

11.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

12.
《Chemphyschem》2003,4(6):608-611
The mechanism of the H/D exchange reaction in alkane/hydrogen mixtures on silica‐supported zirconium hydride was investigated by a modelling study using density functional theory (DFT) calculations. The electronic activation enthalpy (ΔH ) for the C? H bond activation step (TS3) was calculated to be around 92 kJ mol?1, whereas it would be 258 kJ mol?1 for a direct exchange process (TS1, also called the kite TS). These data clearly speak in favour of the former as a mechanism for C? H bond scrambling. Moreover, the calculated enthalpy of activation (ΔH ) for H/D exchange in H2/D2 mixtures (TS2) is 33.5 kJ mol?1, which shows that this reaction is much faster than the H/D scrambling in alkane/H2 mixtures, as shown experimentally. Additionally, the calculated activation entropies (For TS1–4, ΔS ranges between ?129 and ?174 J mol?1 K?1) are very negative. Although the calculated activation entropies are also in full agreement with experimental data (ΔS =?113 J mol?1 K?1), overall, the calculated activation enthalpies are much higher than the experimental ones. This suggests that the actual catalyst is probably more electrophilic than the model chosen for the calculations.  相似文献   

13.
Two new large molecular rectangles ( 4 and 5 ) were obtained by the reaction of two different dinuclear arene ruthenium complexes [Ru2(arene)2(O O)2Cl2] (arene=p‐cymene; O O=2,5‐dihydroxy‐1,4‐benzoquinonato ( 2 ), 6,11‐dihydroxy‐5,12‐naphthacene dionato ( 3 )) with the unsymmetrical amide (N‐[4‐(pyridin‐4‐ylethynyl)phenyl]isonicotinamide) donor ligand 1 in methanol in the presence of AgO3SCF3, forming tetranuclear cations of the general formula [Ru4(arene)4( )2(O O)2]4+. Both rectangles were isolated in good yields as triflate salts and were characterized by multinuclear NMR, ESI‐MS, UV/Vis, and photoluminescence spectroscopy. The crystal structure of 5 was determined by X‐ray diffraction. Luminescent rectangle 5 was used for anion sensing with an amide ligand as a hydrogen‐bond donor and an arene–ruthenium acceptor as a signaling unit. Rectangle 5 strongly bound multicarboxylate anions, such as oxalate, tartrate, and citrate, in UV/Vis titration experiments in 1:1 ratios, in contrast to monoanions, such as F?, Cl?, NO3?, PF6?, CH3COO?, and C6H5COO?. The fluorescence titration experiment showed a large fluorescence enhancement of 5 upon binding to multicarboxylate anions, which could be attributed to blocking of the photoinduced electron transfer process from the arene–ruthenium moiety to the amidic donor in 5 ; this was likely to be a result of hydrogen bonding between the ligand and the anion. On the other hand, rectangle 5 was not selective towards any other anions. To the naked eye, multicarboxylate anions in a solution of 5 in methanol appear greenish upon irradiation with UV light.  相似文献   

14.
Kinetic measurements for the thermal rearrangement of 2,2‐diphenyl‐1‐[(E)‐styryl]cyclopropane ( 22a ) to 3,4,4‐triphenylcyclopent‐1‐ene ( 23a ) in decalin furnished ΔH =31.0±1.2 kcal mol?1 and ΔS =?6.0±2.6 e.u. The lowering of ΔH by 20 kcal mol?1, compared with the rearrangement of the vinylcyclopropane parent, is ascribed to the stabilization of a transition structure (TS) with allylic diradical character. The racemization of (+)‐(S)‐ 22a proceeds with ΔH =28.2±0.8 kcal mol?1 and ΔS =?5±2 e.u., and is at 150° 106 times faster than the rearrangement. Seven further 1‐(2‐arylethenyl)‐2,2‐diphenylcyclopropanes 22 , (E)‐ and (Z)‐isomers, were synthesized and characterized. The (E)‐compounds showed only modest substituent influence in their krac (at 119.4°) and kisom (at 159.3°) values. The lack of solvent dependence of rate opposes charge separation in the TS, but a linear relation of log krac with log p.r.f., i.e., partial rate factors of radical phenylations of ArH, agrees with a diradical TS. The ring‐opening of the preponderant s‐trans‐conformation of 22 gives rise to the 1‐exo‐phenylallyl radical 26 that bears the diphenylethyl radical in 3‐exo‐position, and is responsible for racemization. The 1‐exo‐3‐endo‐substituted allylic diradical 27 arises from the minor s‐gauche‐conformation of 22 and is capable of closing the three‐ or the five‐membered ring, 22 or 23 , respectively. The discussion centers on the question whether the allylic diradical is an intermediate or merely a TS. Quantum‐chemical calculations by Houk et al. (1997) for the parent vinylcyclopropane reveal the lack of an intermediate. Can the conjugation of the allylic diradical with three Ph groups carve the well of an intermediate?  相似文献   

15.
The dispersive component of the surface‐free energy, , of cellulose acetate butyrate (CAB) has been determined using the net retention volume, VN, of n‐alkanes (C5? C8) probes in the temperature range 323.15–393.15 K. The values decrease nonlinearly with increase in temperature, and the temperature coefficients of are ? 0.32 (mJ/m2K) and ? 0.10 (mJ/m2K) in the range 323.15–353.15 K and 353.15–393.15 K, respectively. This variation in has been attributed to the structural changes that take place on the surface of CAB at ~353.15 K. The specific components of the enthalpy of adsorption, , and entropy of adsorption, , calculated using VN of polar solutes are negative. The values are used to evaluate Lewis acidity constant, Ka, and Lewis basicity constant, Kb, for the CAB surface. The Ka and Kb values are found to be 0.126 and 1.109, respectively, which suggest that the surface is predominantly basic. The Ka and Kb results indicate for the necessary surface modifications of CAB which act as biodegradable adsorbent material. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

17.
The structures of [Pd(η3‐C3H5)(HpzR2)2](BF4) (HpzR2=Hpzbp2=3,5‐bis(4‐butoxyphenyl)‐1H‐pyrazole, 1 ; HpzR2=HpzNO2=3,5‐dimethyl‐4‐nitro‐1H‐pyrazole=Hdmnpz, 2 ) and [Ag(HpzR2)2](A) (HpzR2=Hpzbp2, A= , 3 ; HpzR2=HpzNO2, A= , 4 ) were comparatively analyzed to determine the factors responsible for polymeric assemblies. In all cases, the H‐bonding interactions between the pyrazole moieties and the appropriate counterion and, in particular, the orientation of the NH groups of the pyrazole ligands are determinant of one‐dimensional polymeric arrays. In this context, the new compound [Ag(HpzNO2)2](NO3) ( 5 ) was synthesized and its structure analyzed by X‐ray diffraction (Fig. 4). The HpzNO2 serves as N‐monodentate ligand, which coordinates to the AgI center through its pyrazole N‐atom giving rise to an almost linear N Ag N geometry. The planar NO counterion bridges two adjacent AgI centers to form a one‐dimensional zigzag‐shaped chain which is also supported by the presence of N H⋅⋅⋅O bonds between the pyrazole NH group of adjacent cationic entities and the remaining O‐atom of the bridging NO (Fig. 5). The chains are further extended to a two‐dimensional layer‐like structure through additional Ag⋅⋅⋅O interactions involving the NO2 substituents at the pyrazole ligands (Fig. 6).  相似文献   

18.
The haloacetyl ions [XCH2CO+], X = Cl, Br, I, have been produced by the dissociative ionization of selected precursor molecules and identified via their fragmentation characteristics. Their heats of formation, Δ, were 708 ± 8, 750 ± 25 and 784 ± 10 kJ mol?1, respectively, all appreciably above ΔH for [CH3CO+], 653 kJ mol?1. The effect of halogen substitution α to carbonyl is discussed for neutral molecules and their molecular ions.  相似文献   

19.
The oxidation of Na4Fe(CN)6 complex by S2O anion was found to follow an outer‐sphere electron transfer mechanism. We firstly carried out the reaction at pH=1. The specific rate constants of the reaction, kox, are (8.1±0.07)×10?2 and (4.3±0.1)×10?2 mol?1·L·s?1 at μ=1.0 mol·L?1 NaClO4, T=298 K for pH=1 (0.1 mol·L?1 HCl04) and 8, respectively. The activation parameters, obtained by measuring the rate constants of oxidation 283–303 K, were ΔH=(69.0±5.6) kJ·mol?1, ΔS=(?0.34±0.041)×102 J·mol?1·K?1 at pH=l and ΔH=(41.3±5.5) kJ·mol?1, ΔS=(?1.27±0.33)×102 J·mol?1·K?1 at pH=8, respectively. The cyclic voltammetry of Fe(CN) shows that the oxidation is a one‐electron reversible redox process with E1/2 values of 0.55 and 0.46 V vs. normal hydrogen electrode at μ=1.0 mol·L?1 LiClO4, for pH=1 and pH=8 (Tris). respectively. The kinetic results were discussed on the basis of Marcus theory.  相似文献   

20.
CCSD(T) calculations have been used for identically nucleophilic substitution reactions on N‐haloammonium cation, X? + NH3X+ (X = F, Cl, Br, and I), with comparison of classic anionic SN2 reactions, X? + CH3X. The described SN2 reactions are characterized to a double curve potential, and separated charged reactants proceed to form transition state through a stronger complexation and a charge neutralization process. For title reactions X? + NH3X+, charge distributions, geometries, energy barriers, and their correlations have been investigated. Central barriers ΔE for X? + NH3X+ are found to be lower and lie within a relatively narrow range, decreasing in the following order: Cl (21.1 kJ/mol) > F (19.7 kJ/mol) > Br (10.9 kJ/mol) > I (9.1 kJ/mol). The overall barriers ΔE relative to the reactants are negative for all halogens: ?626.0 kJ/mol (F), ?494.1 kJ/mol (Cl), ?484.9 kJ/mol (Br), and ?458.5 kJ/mol (I). Stability energies of the ion–ion complexes ΔEcomp decrease in the order F (645.6 kJ/mol) > Cl (515.2 kJ/mol) > Br (495.8 kJ/mol) > I (467.6 kJ/mol), and are found to correlate well with halogen Mulliken electronegativities (R2 = 0.972) and proton affinity of halogen anions X? (R2 = 0.996). Based on polarizable continuum model, solvent effects have investigated, which indicates solvents, especially polar and protic solvents lower the complexation energy dramatically, due to dually solvated reactant ions, and even character of double well potential in reactions X? + CH3X has disappeared. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号