首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label‐free and DNAzyme‐based strategy to detect DNA ligase activity. This novel strategy relies on the ligation‐trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin‐DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL?1 and a detection limit of 0.2 U mL?1. Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a “split DNA machine” to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL?1.  相似文献   

2.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

3.
Programmed nucleic acid sequences undergo K+ ion‐induced self‐assembly into G‐quadruplexes and separation of the supramolecular structures by the elimination of K+ ions by crown ether or cryptand ion‐receptors. This process allows the switchable formation and dissociation of the respective G‐quadruplexes. The different G‐quadruplex structures bind hemin, and the resulting hemin–G‐quadruplex structures reveal horseradish peroxidase DNAzyme catalytic activities. The following K+ ion/receptor switchable systems are described: 1) The K+‐induced self‐assembly of the Mg2+‐dependent DNAzyme subunits into a catalytic nanostructure using the assembly of G‐quadruplexes as bridging unit. 2) The K+‐induced stabilization of the anti‐thrombin G‐quadruplex nanostructure that inhibits the hydrolytic functions of thrombin. 3) The K+‐induced opening of DNA tweezers through the stabilization of G‐quadruplexes on the “tweezers’ arms" and the release of a strand bridging the tweezers into a closed structure. In all of the systems reversible, switchable, functions are demonstrated. For all systems two different signals are used to follow the switchable functions (fluorescence and the catalytic functions of the derived hemin–G‐quadruplex DNAzyme).  相似文献   

4.
DNAzyme‐capped mesoporous SiO2 nanoparticles (MP SiO2 NPs) are applied as stimuli‐responsive containers for programmed synthesis. Three types of MP SiO2 NPs are prepared by loading the NPs with Cy3‐DBCO (DBCO=dibenzocyclooctyl), Cy5‐N3, and Cy7‐N3, and capping the NP containers with the Mg2+, Zn2+, and histidine‐dependent DNAzyme sequences, respectively. In the presence of Mg2+ and Zn2+ ions as triggers, the respective DNAzyme‐capped NPs are unlocked, leading to the “click” reaction product Cy3‐Cy5. In turn, in the presence of Mg2+ ions and histidine as triggers the second set of DNAzyme‐capped NPs is unlocked leading to the Cy3‐Cy7 conjugated product. The unloading of the respective NPs and the time‐dependent formation of the products are followed by fluorescence spectroscopy (FRET). A detailed kinetic model for the formation of the different products is formulated and it correlates nicely with the experimental results.  相似文献   

5.
Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter‐gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs.  相似文献   

6.
The amplified detection of DNA or of single-base mismatches in DNA is achieved by the use of nucleic acid-functionalized magnetic particles that separate the recognition duplexes and, upon amplification, yield chemiluminescence-generating DNAzymes as reporter units. The analysis of M13 phage ssDNA is achieved by the hybridization of the analyte to capture nucleic acid-functionalized magnetic particles followed by the binding of a DNA machine unit to the analyte domain. The magnetic separation of the multi-component-functionalized magnetic particles, followed by their reaction with polymerase, dNTPs, and the nicking enzyme (Nb.BbvCI) activate the autonomous synthesis of the horseradish peroxidase-mimicking DNAzyme that acts as chemiluminescent reporter. The single-base mutation in DNA is achieved by coupling of the DNA machine to the mutant DNA/capture nucleic acid-functionalized magnetic particles hybrid structure. The activation of the polymerization/nicking cycles yield the chemiluminescent reporting DNAzyme. The magnetic separation of the DNA recognition hybrids improves the signal-to-noise ratio of the analytical protocol as compared to related DNAzyme synthesizing schemes.  相似文献   

7.
The evolution of networks is a fundamental unresolved issue in developing the area of systems chemistry. We introduce a versatile rewiring mechanism that leads to the emergence of nucleic‐acid‐based constitutional dynamic networks (CDNs). A two‐component constituent AA′ functionalized with a Mg2+‐ion‐dependent DNAzyme activator unit forms a complex with an intact hairpin HBB′ composed of B and B′ sequences. Cleavage of HBB′ leads to the two‐component constituent BB′, and its rewiring with AA′ yields CDN X composed of the equilibrated constituents AA′, AB′, BA′, and BB′. In analogy, subjecting AA′ to an intact hairpin HCC′ leads to the formation of CDN Y consisting of AA′, AC′, CA′, and CC′. Subjecting AA′ to the mixture of HBB′ and HCC′ evolves the [3×3] CDN Z, composed of nine constituents, thus demonstrating hierarchical adaptive properties. Furthermore, the DNAzyme units associated with the constituents are applied to tailor emerging catalytic functions from the different CDNs.  相似文献   

8.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

9.
DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range.  相似文献   

10.
Assembly of G‐quadruplexes guided by DNA triplexes in a controlled manner is achieved for the first time. The folding of triplex sequences in acidic conditions brings two separated guanine‐rich sequences together and subsequently a G‐quadruplex structure is formed in the presence of K+. Based on this novel platform, label‐free fluorescent logic gates, such as AND, INHIBIT, and NOR, are constructed with ions as input and the fluorescence of a G‐quadruplex‐specific fluorescent probe NMM as output.  相似文献   

11.
A generic fluorescence sensing platform for analyzing DNA by the Zn(2+)-dependent ligation DNAzyme as amplifying biocatalyst is presented. The platform is based on the target DNA induced ligation of two substrate subunits and the subsequent opening of a beacon hairpin probe by the ligated product. The strand displacement of the ligated product by the beacon hairpin is, however, of limited efficiency. Two strategies are implemented to overcome this limitation. By one method, a "helper" nucleic acid sequence is introduced into the system, and this hybridizes with the DNAzyme components and releases the ligated product for opening of the hairpin. By the second method, a nicking enzyme (Nt.BspQI) is added to the system, and this nicks the duplex between the beacon and ligated product while recycling the free ligation product. By combining the two coadded components ("helper" sequence and nicking enzyme), the sensitive detection of the analyte is demonstrated (detection limit, 20 pM). The enzyme-free amplified fluorescence detection of the target DNA is further presented by the Zn(2+)-dependent ligation DNAzyme-driven activation of the Mg(2+)-dependent DNAzyme. According to this method, the Mg(2+)-dependent DNAzyme subunits displace the ligated product, and the resulting assembled DNAzyme cleaves a fluorophore/quencher-modified substrate to yield fluorescence. The method enabled the detection of the target DNA with a detection limit corresponding to 10 pM. The different sensing platforms are implemented to detect the Tay-Sachs genetic disorder mutant.  相似文献   

12.
We demonstrate the single‐molecule imaging of the catalytic reaction of a Zn2+‐dependent DNAzyme in a DNA origami nanostructure. The single‐molecule catalytic activity of the DNAzyme was examined in the designed nanostructure, a DNA frame. The DNAzyme and a substrate strand attached to two supported dsDNA molecules were assembled in the DNA frame in two different configurations. The reaction was monitored by observing the configurational changes of the incorporated DNA strands in the DNA frame. This configurational changes were clearly observed in accordance with the progress of the reaction. The separation processes of the dsDNA molecules, as induced by the cleavage by the DNAzyme, were directly visualized by high‐speed atomic force microscopy (AFM). This nanostructure‐based AFM imaging technique is suitable for the monitoring of various chemical and biochemical catalytic reactions at the single‐molecule level.  相似文献   

13.
《Electroanalysis》2017,29(2):398-408
An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA‐based Identity, AND and XOR logic gates. Single‐stranded DNA molecules were loaded on the mixed poly(N ,N ‐dimethylaminoethyl methacrylate) (PDMAEMA)/poly(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAEMA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at −1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals.  相似文献   

14.
The Cu2+‐dependent ligation DNAzyme is implemented as a biocatalyst for the colorimetric or chemiluminescence detection of Cu2+ ions, Hg2+ ions, or cocaine. These sensing platforms are based on the structural tailoring of the sequence of the Cu2+‐dependent ligation DNAzyme for specific analytes. The tethering of a subunit of the hemin/G‐quadruplex DNAzyme to the ligation DNAzyme sequence, and the incorporation of an imidazole‐functionalized nucleic‐acid sequence, which acts as a co‐substrate for the ligation DNAzyme that is tethered to the complementary hemin/G‐quadruplex subunit. In the presence of different analytes, Cu2+ ions, Hg2+ ions, or cocaine, the pretailored Cu2+‐dependent ligation DNAzyme sequence stimulates the respective ligation process by combining the imidazole‐functionalized co‐substrate with the ligation DNAzyme sequence. These reactions lead to the self‐assembly of stable hemin/G‐quadruplex DNAzyme nanostructures that enable the colorimetric analysis of the substrate through the DNAzyme‐catalyzed oxidation of 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid), ABTS2?, by H2O2 into the colored product ABTS.?, or the chemiluminescence detection of the substrate through the DNAzyme‐catalyzed oxidation of luminol by H2O2. The detection limits for the sensing of Cu2+ ions, Hg2+ ions, and cocaine correspond to 1 nM , 10 nM and 2.5 μM , respectively. These different sensing platforms also reveal impressive selectivities.  相似文献   

15.
In this study, we developed an electrochemical sensor for sensitive detection of Cu2+ based on gold nanoflowers (AuNFs)‐modified electrode and DNAzyme functionalized Au@MIL‐101(Fe) (MIL: Materials of Institute Lavoisier). The AuNFs‐modified indium tin oxide modified conductive glass electrode(AuNFs/ITO) prepared via electrodeposition showed improved electronic transport properties and provided more active sites to adsorb large amounts of oligonucleotide substrate (DNA1) via thiol‐gold bonds. The stable Au@MIL‐101(Fe) could guarantee the sensitivity because of its intrinsic peroxidase mimic property, while the Cu2+‐dependent DNA‐cleaving DNAzyme linked to Au@MIL‐101(Fe) achieved the selectivity toward Cu2+. After the DNAzyme substrate strand (DNA2) was cleaved into two parts due to the presence of Cu2+, the oligonucleotide fragment linked to MIL‐101(Fe) was able to hybridize with DNA1 adsorbed onto the surface of AuNFs/ITO. Due to the peroxidase‐like catalytic activity of MIL‐101(Fe) and the affinity recognition property of DNAzyme toward Cu2+, the electrochemical biosensor showed a sensitive detection range from 0.001 to 100 μM, a detection limit of 0.457 nM and a high selectivity, demonstrating its potential for Cu2+ detection in real environmental samples.  相似文献   

16.
In this paper, we proposed a facile and accurate way for controlling multiplex fluorescent logic gates through changing the exciting and the observing wavelengths. As proof-of-principle, a Pb2+-specific DNAzyme probe and a thymine (T)-rich DNA probe were introduced to a double-stranded (ds-) DNA. The addition style of the two ions served as the four inputs by changing the distance of the three fluorophores, 6-carboxyfluorescein (FAM), ALEXA 532 (ALEXA) and carboxytetramethylrhodamine (TAMRA), all of which were modified on the dsDNA probe. Compared with the previous methods, the present approach needed neither different inputs nor the change of sequence of the probe to achieve multiplex logic gates. Furthermore, the modularity of the strategy may allow it to be extended to other types of logic gates.  相似文献   

17.
Self‐assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA‐based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three‐state molecular logic gate readily achievable on this platform. Such DNA‐based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

18.
We have developed an ingenious method, termed Cas9 nickase‐based amplification reaction (Cas9nAR), to amplify a target fragment from genomic DNA at a constant temperature of 37 °C. Cas9nAR employs a sgRNA:Cas9n complex with a single‐strand nicking property, a strand‐displacing DNA polymerase, and two primers bearing the cleavage sequence of Cas9n, to promote cycles of DNA replication through priming, extension, nicking, and displacement reaction steps. Cas9nAR exhibits a zeptomolar limit of detection (2 copies in 20 μL of reaction system) within 60 min and a single‐base discrimination capability. More importantly, the underlying principle of Cas9nAR offers simplicity in primer design and universality in application. Considering the superior sensitivity and specificity, as well as the simple‐to‐implement, rapid, and isothermal features, Cas9nAR holds great potential to become a routine assay for the quantitative detection of nucleic acids in basic and applied studies.  相似文献   

19.
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO22+)‐specific 39E DNAzyme in the presence of Mg2+, Zn2+, Pb2+, or UO22+. At pH 5.5 and physiological ionic strength (100 mM Na+), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg2+ or Zn2+. However, no folding occurred in the presence of Pb2+ or UO22+; this is analogous to the “lock‐and‐key” catalysis mode first observed in the Pb2+‐specific 8–17 DNAzyme. However, Mg2+ and Zn2+ exert different effects on the 8–17 and 39E DNAzymes. Whereas Mg2+ or Zn2+‐dependent folding promoted 8–17 DNAzyme activity, the 39E DNAzyme folding induced by Mg2+ or Zn2+ inhibited UO22+‐specific activity. Group IIA series of metal ions (Mg2+, Ca2+, Sr2+) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr2+ (1.12 Å) is comparable to that of Pb2+ (1.20 Å), but contrary to Pb2+, Sr2+ induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb2+ and UO22+. Under low ionic strength (30 mM Na+), all four metal ions (Mg2+, Zn2+, Pb2+, and UO22+), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA‐backbone phosphates in addition to playing specific catalytic roles. Mg2+ at low (<2 mM ) concentration promoted UO22+‐specific activity, whereas Mg2+ at high (>2 mM ) concentration inhibited the UO22+‐specific activity. Therefore, the lock‐and‐key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock‐and‐key mode only at ionic strengths of 100 mM or greater.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号