首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel κ3N,N,O ligands tend to form 1D coordination polymer strands. Deposition of 1D structures on highly oriented pyrolytic graphite (HOPG) was achieved from diluted solutions and polymer strands have been studied on HOPG by AFM/STM. Single strands were mapped by STM and their electronic properties were subsequently characterized by current imaging tunneling spectroscopy (CITS). Periodic density functional calculations simulating a polymer strand deposited on a HOPG surface are in agreement with the zig‐zag structure indicated by experimental findings. Both the observed periodicity and the Zn–Zn distances can be reproduced in the simulations. Van der Waals interactions were found to play a major role for the geometry of the isolated polymer strand, for the adsorption geometry on HOPG, as well as for the adsorption energy.  相似文献   

2.
Supramolecular metal ion assemblies are deposited from their solutions onto highly orientated pyrolytic graphite (HOPG) substrates to be imaged by scanning tunnelling microscopy (STM). Since the structural and electronic information of STM measurements are strongly entangled, the spectroscopic interpretation and analysis of the images of such molecular assemblies has proven to be challenging. This tutorial review focuses on a general room temperature scanning tunnelling spectroscopy (STS) protocol, current induced tunnelling spectroscopy (CITS), applied to free-standing 1D and 2D arrangements of supramolecular metal ion assemblies rendering local tunnelling probabilities with submolecular resolution. The size of the investigated molecular assemblies was confirmed by comparison with X-ray crystallographic data, while the consistency of the spectroscopic investigations and of the determined positions of the metal ions within the assemblies was checked by DFT calculations. Due to the genuine level structure of coordinated metal centers, it was possible to map exclusively the position of the coordination bonds in supramolecular transition metal assemblies with submolecular spatial resolution using the CITS technique. CITS might thus constitute an important tool to achieve directed bottom-up construction and controlled manipulation of fully electronically functional, two-dimensional molecular designs.  相似文献   

3.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

4.
《Chemphyschem》2004,5(2):202-208
We have designed and synthesized a series of Schiff base derivatives, and studied their structural features in two‐dimensional (2D) and three‐dimensional (3D) states by combining scanning tunneling microscopy (STM) and X‐ray diffraction experiments. The Schiff‐base derivatives with short alkyl chains crystallize easily, which allows a detailed structural analysis by X‐ray diffraction. Due to the strong adsorbate–substrate interactions, those bases with long alkyl chains easily form 2D assemblies on highly oriented pyrolytic graphite (HOPG). The STM images indicate also that the introduction of two methoxy groups into the molecule can change the structure of these 2D assemblies as a result of the increased steric hindrances, for example: the Schiff‐base derivative, bearing both methoxy groups and C16H33 tails, forms 2D Moiré patterns, and an alignment of pairing Schiff‐base molecules may be easily resolved. Conversely, the Schiff base derivative, bearing solely C16H33 tails, forms 2D non‐Moiré patterns. It is demonstrated that the 3D structural features result from the compromise of intermolecular interactions of different molecular moieties. However, there is one more factor, which also governs the 2D structure: the adsorbate‐substrate interaction. The 3D crystal structure may thus help to understand many factors involved in the formation of 2D structures, and would be helpful for designing new molecular assemblies with tailoring functions.  相似文献   

5.
Polymetallic, highly organized molecular architectures can be created by "bottom-up" self-assembly methods using ligands with appropriately programmed coordination information. Ligands based on 2,6-picolyldihydrazone (tritopic and pentatopic) and 3,6-pyridazinedihydrazone (tetratopic) cores, with tridentate coordination pockets, are highly specific and lead to the efficient self-assembly of square [3 x 3] Mn9, [4 x 4] Mn16, and [5 x 5] Mn25 nanoscale grids. Subtle changes in the tritopic ligand composition to include bulky end groups can lead to a rectangular 3 x [1 x 3] Mn9 grid, while changing the central pyridazine to a more sterically demanding pyrazole leads to simple dinuclear copper complexes, despite the potential for binding four metal ions. The creation of all bidentate sites in a tetratopic pyridazine ligand leads to a dramatically different spiral Mn4 strand. Single-crystal X-ray structural data show metallic connectivity through both mu-O and mu-NN bridges, which leads to dominant intramolecular antiferromagnetic spin exchange in all cases. Surface depositions of the Mn9, Mn16, and Mn25 square grid molecules on graphite (HOPG) have been examined using STM/CITS imagery (scanning tunneling microscopy/current imaging tunneling spectroscopy), where tunneling through the metal d-orbital-based HOMO levels reveals the metal ion positions. CITS imagery of the grids clearly shows the presence of 9, 16, and 25 manganese ions in the expected square grid arrangements, highlighting the importance and power of this technique in establishing the molecular nature of the surface adsorbed species. Nanoscale, electronically functional, polymetallic assemblies of this sort, created by such a bottom-up synthetic approach, constitute important components for advanced molecule-based materials.  相似文献   

6.
Metal‐mediated base pairs can be used to insert metal ions into nucleic acids at precisely defined positions. As structural data on the resulting metal‐modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N‐methyl‐2, 2'‐dipicolylamine (dipic) are reported. In combination with an azole‐containing artificial nucleoside, this tridentate ligand had recently been used to generate metal‐mediated base pairs (Chem. Commun. 2011 , 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal‐mediated base pair) comprising N‐methyl‐2, 2'‐dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag ··· Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.  相似文献   

7.
Reaction of cobalt(II) chloride hexahydrate with N‐substituted diethanolamines H2L2–4 ( 3 ) in the presence of LiH in anhydrous THF leads under anaerobic conditions to the formation of three isostructural tetranuclear cobalt(II) complexes [CoII4(Cl)4(HL2–4)4] ( 4 ) with a [Co43‐O)4]4+ cubane core. According to X‐ray structural analyses, the complexes 4 a , c crystallize in the tetragonal space group I41/a, whereas for complex 4 b the tetragonal space group P$\bar 4$ was found. In the solid state the orientation of the cubane cores and the formation of a 3D framework were controlled by the ligand substituents of the cobalt(II) cubanes 4 . This also allowed detailed magnetic investigations on single crystals. The analysis of the SQUID magnetic susceptibility data for 4 a gave intramolecular ferromagnetic couplings of the cobalt(II) ions (J1≈20.4 K, J2≈7.6 K), resulting in an S=6 ground‐state multiplet. The anisotropy was found to be of the easy‐axis type (D=?1.55 K) with a resulting anisotropy barrier of Δ≈55.8 K. Two‐dimensional electron‐gas (2DEG) Hall magnetization measurements revealed that complex 4 a is a single‐molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep‐rate dependencies below a blocking temperature of about 4.4 K. The hysteresis loops collapse at zero field owing to fast quantum tunneling of the magnetization (QTM). The structural and electronic properties of cobalt(II) cubane 4 a , deposited on a highly oriented pyrolytic graphite (HOPG) surface, were investigated by means of STM and current imaging tunneling spectroscopy (CITS) at RT and standard atmospheric pressure. In CITS measurements the rather large contrast found at the expected locations of the metal centers of the molecules indicated the presence of a strongly localized LUMO.  相似文献   

8.
We report on a multi‐technique investigation of the supramolecular organisation of N,N‐diphenyl oxalic amide under differently dimensioned environments, namely three‐dimensional (3D) in the bulk crystal, and in two dimensions on the Ag(111) surface as well as on the reconstructed Au(111) surface. With the help of X‐ray structure analysis and scanning tunneling microscopy (STM) we find that the molecules organize in hydrogen‐bonded chains with the bonding motif qualitatively changed by the surface confinement. In two dimensions, the chains exhibit enantiomorphic order even though they consist of a racemic mixture of chiral entities. By a combination of the STM data with near‐edge X‐ray absorption fine‐structure spectroscopy, we show that the conformation of the molecule adapts such that the local registry of the functional group with the substrate is optimized while avoiding steric hindrance of the phenyl groups. In the low coverage case, the length of the chains is limited by the Au(111) reconstruction lines restricting the molecules into fcc stacked areas. A kinetic Monte Carlo simulated annealing is used to explain the selective assembly in the fcc stacked regions.  相似文献   

9.
A new series of shape‐persistent imine‐bridged macrocycles were synthesized based on dynamic covalent chemistry. The macrocycles had an alternating sequence of dibenzothiophene and N,N′‐bis(salicylidene)‐ethylenediamine (salen) tethering branched alkyl chains. The macrocycles and tetranuclear metallomacrocycles bearing long and branched alkyl chains exhibited thermotropic columnar liquid‐crystalline phases over a wide temperature range and the metallomacrocycles greatly depended on the characteristics of the coordinated metal ions. The metal‐free macrocycle showed a liquid‐crystalline phase with a lamellar structure and poor birefringence. In sharp contrast, the macrocyclic Ni complex showed a columnar oblique liquid‐crystalline phase, whereas the Pd and Cu complexes showed columnar liquid‐crystalline phases with a lamellar structure. The macroscopic organization and thermal properties of the corresponding liquid‐crystalline metallomacrocycles were significantly dependent on the subtle structural differences among the planar macrocycles, which were revealed by single‐crystal X‐ray crystallographic analysis of the macrocycles with shorter alkyl chains.  相似文献   

10.
A solution processible polymer—poly(3,3‴‐didodecylquaterthiophene) (PQT‐12) is investigated at the liquid/solid interface using the scanning tunneling microscopy (STM). Two‐dimensional ordered films made up of self‐assembled domains, with dimensions of 100 nm × 50 nm adsorbed on highly oriented pyrolytic graphite (HOPG) were formed. These domains consist of parallel lamellar polymer chains, with the alkyl chains forming interdigitated structures, along with U‐shaped and closed ring segments of the polymer chains. A polymer chain packing model is proposed herein, which attempts to propose a correlation between the packing of long chains and charge mobilities. These STM results could help in understanding the relationship between the extended conjugation and molecular organization of the PQT‐12 chains.

  相似文献   


11.
Using 2‐amino­methyl‐1H‐benz­imidazole as the ligand, a new thio­cyanate‐bridged copper(II) complex, namely bis(2‐aminomethyl‐1H‐benz­imidazole‐κ2N2,N3)­di­thio­cyanato­copper(II),[Cu(NCS)2(C8H9N3)], has been synthesized and structurally characterized. The Cu atom is five‐coordinated and exhibits a distorted square‐pyramidal geometry. The thio­cyanate ions (NCS) act as either bridging or terminal ligands. The bridging NCS ligands connect neighboring Cu atoms, constructing chains, while the terminal NCS ligands form hydrogen bonds with amine H atoms, leading to a complicated network.  相似文献   

12.
5‐[(Imidazol‐1‐yl)methyl]benzene‐1,3‐dicarboxylic acid (H2L) was synthesized and the dimethylformamide‐ and dimethylacetamide‐solvated structures of its adducts with CuII, namely catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylformamide disolvate], {[Cu(C12H9N2O4)2]·2C3H7NO}n, (I), and catena‐poly[[copper(II)‐bis[μ‐3‐carboxy‐5‐[(imidazol‐1‐yl)methyl]benzoato]] dimethylacetamide disolvate], {[Cu(C12H9N2O4)2]·2C4H9NO}n, (II), the formation of which are associated with mono‐deprotonation of H2L. The two structures are isomorphous and isometric. They consist of one‐dimensional coordination polymers of the organic ligand with CuII in a 2:1 ratio, [Cu(μ‐HL)2]n, crystallizing as the dimethylformamide (DMF) or dimethylacetamide (DMA) disolvates. The CuII cations are characterized by a coordination number of six, being located on centres of crystallographic inversion. In the polymeric chains, each CuII cation is linked to four neighbouring HL ligands, and the organic ligand is coordinated via Cu—O and Cu—N bonds to two CuII cations. In the corresponding crystal structures of (I) and (II), the coordination chains, aligned parallel to the c axis, are further interlinked by strong hydrogen bonds between the noncoordinated carboxy groups in one array and the coordinated carboxylate groups of neighbouring chains. Molecules of DMF and DMA (disordered) are accommodated at the interface between adjacent polymeric assemblies. This report provides the first structural evidence for the formation of coordination polymers with H2Lvia multiple metal–ligand bonds through both carboxylate and imidazole groups.  相似文献   

13.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

14.
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

15.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

16.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

17.
The 3d–3d random bimetallic compound [Co2.28Mn0.72(N3)6(mpc‐3)2(CH3OH)2] ( 1 ) (mpc‐3 = N‐methylpyridinium‐3‐carboxylate) was synthesized by partly substituting the CoII ions in the homometallic compound by MnII. Complex 1 was structurally and magnetically characterized. It consists of one‐dimensional chains with the neighboring metal ions being linked alternatively by [(μ‐EO‐N3)2(μ‐COO)] (EO = end‐on) triple bridges and double EO azide bridges. Hydrogen‐bonding interactions and π–π interactions are involved in the formation of a three‐dimensional supramolecular network. Magnetic measurements revealed that complex 1 exhibits slow relaxation, which is similar to the homometallic CoII parent compound whereas the TB is lower than that of the CoII analog.  相似文献   

18.
《化学:亚洲杂志》2017,12(19):2558-2564
The on‐surface self‐assembled behavior of four C 3‐symmetric π‐conjugated planar molecules ( Tp , T12 , T18 , and Ex ) has been investigated. These molecules are excellent building blocks for the construction of noncovalent organic frameworks in the bulk phase. Their hydrogen‐bonded 2D on‐surface self‐assemblies are observed under STM at the solid/liquid interface; these structures are very different to those in the bulk crystal. Upon combining the results of STM measurements and DFT calculations, the formation mechanism of different assemblies is revealed; in particular, the critical role of hydrogen bonding in the assemblies. This research provides us with not only a deep insight into the self‐assembled behavior of these novel functional molecules, but also a convenient approach toward the construction of 2D multiporous networks.  相似文献   

19.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

20.
Scanning tunneling microscopy (STM) combined with density functional theory (DFT) calculations were applied in studying the anisotropic adsorption and condensation of tert‐butylamine (t‐BA) molecules in the vicinity of the steps on the Cu(111) surface. The preferential adsorption at the upper step edges and uneven distribution of t‐BA in the vicinity of the steps illustrate the asymmetric electronic structure of the surface steps. Our observation demonstrates that the adsorption and diffusion of a polar molecule would be significantly mediated by steps on metal surfaces due to the molecule–step interaction and the intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号