首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Crystal structures are reported for three isomeric compounds, namely 2‐(2‐hydroxy­phenyl)‐2‐oxazoline, (I), 2‐(3‐hydroxy­phenyl)‐2‐oxazoline, (II), and 2‐(4‐hydroxy­phenyl)‐2‐oxazoline, (III), all C9H9NO2 [systematic names: 2‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (I), 3‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (II), and 4‐(4,5‐dihydro‐1,3‐oxazol‐2‐yl)phenol, (III)]. In these compounds, the deviation from coplanarity of the oxazoline and benzene rings is dependent on the position of the hydroxy group on the benzene ring. The coplanar arrangement in (I) is stabilized by a strong intra­molecular O—H⋯N hydrogen bond. Surprisingly, the 2‐oxazoline ring in mol­ecule B of (II) adopts a 3T4 (C2TC3) conformation, while the 2‐oxazoline ring in mol­ecule A, as well as that in (I) and (III), is nearly planar, as expected. Tetra­mers of mol­ecules of (II) are formed and they are bound together via weak C—H⋯N hydrogen bonds. In (III), strong inter­molecular O—H⋯N hydrogen bonds and weak intra­molecular C—H⋯O hydrogen bonds lead to the formation of an infinite chain of mol­ecules perpendicular to the b direction. This paper also reports a theoretical investigation of hydrogen bonds, based on density functional theory (DFT) employing periodic boundary conditions.  相似文献   

2.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

3.
In the crystal structure of the title compound, C9H14N2O3, the molecules are linked by N—H?O=C bonds into chains parallel to [001]. Large crystals are readily obtained, presumably because of the hydrogen bonds and an energetically stable conformation of the mol­ecule.  相似文献   

4.
Two new structurally isomeric, 2‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[h]chromen‐2‐yl)‐1‐naphthol ( 1 ) and 3‐(2,4,4‐trimethyl‐3,4‐dihydro‐2H‐benzo[g]chromen‐2‐yl)‐2‐naphthol ( 3 ) have been synthesized from 2‐acetyl‐1‐naphthol and ethyl‐3‐hydroxy‐2‐naphthoate, respectively, involving Grignard reaction, dehydration of the corresponding tertiary alcohols, and hetero Diels–Alder dimerization. The two benzochromenes ( 1 and 3 ) have been fully characterized by IR, NMR, and HRESIMS data. Their structures are further supported by crystallography of their corresponding acetates ( 2 and 4 ). J. Heterocyclic Chem., (2011).  相似文献   

5.
In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8)°, respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6)°. In both mol­ecules, the double bond connecting the methyl­nitro­vinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P212121 for (II)], the mode of packing of compounds (I) and (II) is determined by similar inter­molecular N—H⋯O hydrogen‐bonding inter­actions, forming chains that run parallel to [101] in (I) and [001] in (II).  相似文献   

6.
Synthesis of 9‐[2‐(2‐hydroxymethyl‐2‐methyl‐, ‐(2‐acetoxymethyl‐2‐methyl‐, ‐(2,2‐di(hydroxymethyl)‐, and ‐(2,2‐di(acetoxymethyl)‐1,3‐dioxan‐5‐yl)ethyl] derivatives of guanine and 2‐aminopurine, 2–9 , has been accomplished in seven to eight step sequences from readily available 1‐(tert‐butyldiphenylsilyloxy)‐acetone, 1,3‐di(tert‐butyldiphenylsilyloxy)acetone, and the diol 10 . Formation of cyclic ketals 11 and 12 was carried out successfully under an acidic condition using a catalytic amount of methanesulfonic acid along with excess anhydrous copper(II) sulfate in toluene. Subsequent reactions of desilylation, acetylation, hydrogenolysis, and bromination afforded the key intermediates 19 and 20 , which were coupled with 2‐amino‐6‐chloropurine to produce the purine compounds 21 and 22 in good yields. Guanine derivatives 2–5 were obtained from 21 and 22 by hydrolysis and acetylation, while the dechlorination and hydrolysis of 21 and 22 yielded the 2‐aminopurine compounds 6–9 .  相似文献   

7.
A variety of 2‐pyrrolidino‐, 2‐N‐methylpiperazino‐, 2‐piperidino‐, and 2‐morpholino‐1,3,4‐thiadiazines were prepared by cyclocondensation of phenacyl halides with thiosemicarbazides. Heating of the products resulted in desulfurization and formation of pyrazoles. The rate of this process strongly depends on the substitution pattern of the 1,3,4‐thiadiazines.  相似文献   

8.
In the title compounds, C11H18N2, (II), and C13H20N2O, (III), the pyrrolidine rings have twist conformations. Compound (II) crystallizes with two independent molecules (A and B) in the asymmetric unit. The mean planes of the pyrrole and pyrrolidine rings are inclined to one another by 89.99 (11) and 89.35 (10)° in molecules A and B, respectively. In (III), the amide derivative of (II), the same dihedral angle is much smaller, at only 13.42 (10)°. In the crystal structure of (II), the individual molecules are linked via N—H...N hydrogen bonds to form inversion dimers, each with an R22(12) graph‐set motif. In the crystal structure of (III), the molecules are linked via N—H...O hydrogen bonds to form inversion dimers with an R22(16) graph‐set motif.  相似文献   

9.
In this study, the structure–property relationships for a series of statistical 2‐nonyl‐2‐oxazoline (NonOx) and 2‐phenyl‐2‐oxazoline (PhOx) copolymers were investigated for the first time. The copolymerization kinetics were studied and the reactivity ratios were calculated to be rNonOx = 7.1 ± 1.4 and rPhOx = 0.02 ± 0.1 revealing the formation of gradient copolymers. The synthesis of a systematical series of NonOx–PhOx copolymers is described, whereby the amount of NonOx was increased in steps of 10 mol %. The thermal and surface properties were investigated for this series of well‐defined copolymers. The thermal properties revealed a linear decrease in glass transition temperature for copolymers containing up to 39 wt % NonOx. Furthermore, the melting temperature of the copolymers containing 0 to 55 wt % PhOx linearly decreased most likely due to disturbance of the NonOx crystalline domains by incorporation of PhOx in the NonOx part of the copolymer. The surface energies of spincoated polymer films revealed a strong decrease in surface energy upon incorporation of NonOx in the copolymers due to strong phase separation between NonOx and PhOx allowing the NonOx chains to orient to the surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6433–6440, 2009  相似文献   

10.
11.
The title compound, C14H18INO, crystallizes as +sc/+sp/+sc 2‐iodoanilide molecules (and racemic opposites) and shows significant intermolecular I...O interactions in the solid state, forming dimeric pairs about centres of symmetry. Under asymmetric Heck conditions, the S enantiomer of the dihydroindol‐2‐one was obtained using (R)‐(+)‐2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl [(R)‐BINAP], suggesting a mechanism that proceeds by oxidative addition to give the title (P) enantiomer of the compound and pro‐S coordination of the Re face of the alkene in a conformation similar to that defined crystallographically, except that rotation about the C—C bond of the butenyl group is required.  相似文献   

12.
13.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

14.
The title compound, C22H17NO3, crystallizes in the monoclinic space group P21/c with four molecules per unit cell. The mol­ecules are arranged in centrosymmetric pairs, joined via the C and attached H atoms in the meta position relative to the methoxy group. These pairs are bonded in the crystalline phase as a result of non‐specific dispersive interactions, and through a network of C—H?O interactions involving the non‐bonded O atom of the carboxy group and, to some extent, the O atom of the methoxy group. The methoxy substituent lies in the plane of the almost planar acridine moiety and is directed towards the phenyl ester group. The phenyl ester group itself is twisted by 35.9 (5)° relative to the mean plane of the acridine moiety.  相似文献   

15.
2-脱氧-烟酰胺基-β-D-氨基葡萄糖的合成和表征   总被引:1,自引:0,他引:1  
A new nicotinic acid derivative,2-deoxy-2-nicotinoylamido-β-D-glucopyranose, was synthesized with β-configuration exclusively. The structure and properties of the product were characterized by ^1H NMR, PT-IR, MS, DSC and polarimeter. The details of ^1H NMR spectrum and the mass spectrum proved that there are a great amount of hydrogen bonds in the product.  相似文献   

16.
17.
Treatment of 2‐ethynylanilines with P(OPh)3 gives either 2,2‐diphenoxy‐2‐λ5‐phosphaquinolines or 2‐phenoxy‐2‐λ5‐phosphaquinolin‐2‐ones under transition‐metal‐free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the N?PV double bond and its potential for delocalization within a cyclic π‐electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2‐quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40 %, Stokes shifts of 50–150 nm, and emission wavelengths of 380–540 nm. The phosphaquinolin‐2‐ones possess one of the strongest solution‐state dimerization constants for a D–A system (130 M ?1) owing to the close proximity of a strong acceptor (P?O) and a strong donor (phosphonamidate N? H), which suggests that they might hold promise as new hydrogen‐bonding hosts for optoelectronic sensing.  相似文献   

18.
13‐cis‐β,β‐Carotene, C40H56, crystallizes with a complete molecule in the asymmetric unit, whereas 15‐cis‐β,β‐carotene, also C40H56, has twofold symmetry about an axis through the central bond of the polyene chain. The polyene methyl groups are arranged on one side of the polyene chains for each molecule and the 6‐scisβ end groups, with the cyclohexene rings in half‐chair conformations, are twisted out of the planes of the polyene chains by angles ranging from 41.37 (17) to 52.2 (4)°. The molecules in each structure pack so that the arms of one occupy the cleft of the next, and there is significant π–π stacking of the almost‐parallel polyene chains of the 15‐cis isomer, which approach at distances of 3.319 (1)–3.591 (1) Å.  相似文献   

19.
The title compounds, C10H9N5O·H2O (L1·H2O) and C16H12N6O (L2), were synthesized by solvent‐free aldol condensation at room temperature. L1, prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 1:1 molar ratio, crystallized as a monohydrate. L2 was prepared by grinding picolinaldehyde with 2,3‐diamino‐3‐isocyanoacrylonitrile in a 2:1 molar ratio. By varying the conditions of crystallization it was possible to obtain two polymorphs, viz. L2‐I and L2‐II; both crystallized in the monoclinic space group P21/c. They differ in the orientation of one pyridine ring with respect to the plane of the imidazole ring. In L2‐I, this ring is oriented towards and above the imidazole ring, while in L2‐II it is rotated away from and below the imidazole ring. In all three molecules, there is a short intramolecular N—H...N contact inherent to the planarity of the systems. In L1·H2O, this involves an amino H atom and the C=N N atom, while in L2 it involves an amino H atom and an imidazole N atom. In the crystal structure of L1·H2O, there are N—H...O and O—H...O intermolecular hydrogen bonds which link the molecules to form two‐dimensional networks which stack along [001]. These networks are further linked via intermolecular N—H...N(cyano) hydrogen bonds to form an extended three‐dimensional network. In the crystal structure of L2‐I, symmetry‐related molecules are linked via N—H...N hydrogen bonds, leading to the formation of dimers centred about inversion centres. These dimers are further linked via N—H...O hydrogen bonds involving the amide group, also centred about inversion centres, to form a one‐dimensional arrangement propagating in [100]. In the crystal structure of L2‐II, the presence of intermolecular N—H...O hydrogen bonds involving the amide group results in the formation of dimers centred about inversion centres. These are linked via N—H...N hydrogen bonds involving the second amide H atom and the cyano N atom, to form two‐dimensional networks in the bc plane. In L2‐I and L2‐II, C—H...π and π–π interactions are also present.  相似文献   

20.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号