首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-sensitivity differential scanning calorimetry was utilized to examine whether lipids capable of forming an inverted nonlamellar hexagonal II (HII) phase can be deposited into nanoporous substrate-supported arrays. Particularly, we compare the thermotropic phase properties of nanoconfined unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine lipid bilayers with unsupported dispersions to assess nanoconfinement effects, focusing on the lamellar fluid (Lalpha) to HII phase transition. Experimental results provide direct and clear evidence for the formation of an HII phase upon both heating and cooling. However, a small shift in the Lalpha/HII phase transition temperature, as well as an increase in the magnitude of the associated temperature hysteresis, was observed in the nanoporous substrate-supported system. Additionally, nanoconfinement effects on the interaction and location of the antimicrobial peptide gramicidin S (GS) with nanoporous substrate-supported cardiolipin bilayers were examined by Fourier transform infrared spectroscopy as a function of temperature and phospholipid phase state. Upon heating, GS molecules began to insert into nanoconfined, substrate-supported cardiolipin bilayers at lower temperatures relative to the gel/liquid-crystalline phase transition temperature than into unsupported bilayers. The reduction in the polarity and hydrogen-bonding potential environment of GS in the Lalpha state suggests that GS is located at the polar/apolar interfacial region in both supported and unsupported cardiolipin bilayers and that the capacity of GS to interact with nanoporous substrate-supported cardiolipin bilayers was not significantly hindered by nanoconfinement. These studies further demonstrate the usefulness of supported lipid bilayers inside nanoporous substrates.  相似文献   

2.
Widely shifting localized surface plasmon resonance (LSPR) bands of nanoporous metals is essential for light manipulation within small volumes. In this work, nanoporous gold-titania core-shells fabricated by atomic layer deposition exhibit tunable LSPR of gold skeletons in comparison with nanoporous gold-alumina developed before. Extremely large red-shift of LSPR band in nanoporous gold-titania from 537 to 751 nm results from high refractive index of titania and its dielectric medium dependence of LSPR, and the well-controlled thickness of titania shell at the nanometer scale will benefit to integrate optical nanodevices with supreme performances.  相似文献   

3.
The production of molecular hydrogen in the radiolysis of dried or hydrated nanoporous controlled-pore glasses (CPG) has been carefully studied using 10 MeV electron irradiation at high dose rate. In all cases, the H2 yield increases when the pore size decreases. Moreover, the yields measured in dried materials are two orders of magnitude smaller than those obtained in hydrated glasses. This proves that the part of the H2 coming from the surface of the material is negligible in the hydrated case. Thus, the measured yields correspond to those of nanoconfined water. Moreover, these yields are not modified by the presence of potassium bromide, which is a hydroxyl radical scavenger. This experimental observation shows that the back reaction between H2 and HO* does not take place in such confined environments. These porous materials have been characterized before and after irradiation by means of Fourier-transform infrared (FT-IR) spectroscopy, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) techniques, which helps to understand the elementary processes taking place in this type of environment, especially the protective effect of water on the surface in the case of hydrated glasses.  相似文献   

4.
The synthesis of low-density, nanoporous materials has been an active area of study in chemistry and materials science dating back to the initial synthesis of aerogels. These materials, however, are most often limited to metal oxides, e.g., silica and alumina, and organic aerogels, e.g., resorcinol/formaldehyde, or carbon aerogels, produced from the pyrolysis of organic aerogels. The ability to form monolithic metallic nanocellular porous materials is difficult and sometimes elusive using conventional methodology. Here we report a relatively simple method to access unprecedented ultralow-density, nanostructured, monolithic, transition-metal foams, utilizing self-propagating combustion synthesis of novel transition-metal complexes containing high nitrogen energetic ligands. During the investigation of the decomposition behavior of the high-nitrogen transition metal complexes, it was discovered that nanostructured metal monolithic foams were formed in a post flame-front dynamic assembly having remarkably low densities down to 0.011 g cm(-3) and extremely high surface areas as high as 270 m(2) g(-1). We have produced monolithic nanoporous metal foams via this method of iron, cobalt, copper, and silver metals. We expect to be able to apply this to many other metals and to be able to tailor the resulting structure significantly.  相似文献   

5.
Activated carbon fibre (ACF) is a nanoporous material which is useful for various important applications such as safe biogas and natural gas storage as well as heavy/precious metals removal and recovery. It is commonly produced from synthetic fibres such as rayon, polyacrylnitrile and pitch mainly derived from petroleum products, which are less environmental friendly. Besides, cost of ACF production is high due to the high burnt off percentage of such expensive raw materials. As an alternative, natural fibre of oil palm empty fruit bunch was used as a raw material for ACF preparation. Thermogravimetric analysis was carried out with two different gases, i.e. nitrogen gas and oxygen gas in order to observe pyrolysis and combustion behaviours in different gases. Carbonisation temperatures were then identified from the peaks of derivative thermogravimetry results. Different carbonisation temperatures (85?C200?°C) were chosen to carbonise the EFB fibre to observe the effect of carbonisation temperatures on the nanoporous characteristics, i.e. surface area, pore size distribution and pore volume of the ACF produced. Good nanoporous characteristics such as surface area up to 2,740?m2/g of the ACF prepared were observed, suggesting EFB fibre as an excellent candidate to replace synthetic fibre for ACF production. The discussion of relationship between thermal characteristics and nanopores in ACF derived from EFB were also included in this study.  相似文献   

6.
A nanoporous copper film was fabricated on a copper wire by electrodeposition of copper/zinc alloy and chemically etching of zinc. The surface morphology was investigated by SEM. When applied to detect glucose in an amperometric flow injection system the porous copper electrode provided 12 times higher sensitivity than solid copper. It could be continuously used up to 50 times (%RSD=5.7). Different preparations of the porous film provided reproducible responses (P<0.05). Detection of glucose in E. coli cultivation medium compared well with spectrophotometric technique (P<0.05). This simple technique can produce a nanoporous electrode with good performances and can easily be applied to other metals and analytes.  相似文献   

7.
近年来,致力于Pt基电催化剂在燃料电池中的应用已取得显著成果.但随贵金属(如Pt)成本的增加,提高催化剂的活性以及降低负载量的需求也日益迫切.为此,作者合成并比较了纳米多孔Pt,PtRu及PtRuIr3种电催化剂.以扫描电镜(SEM)、能量色散谱(EDS)、X射线衍射(XRD)和X射线光电子能谱(XPS)表征水热法制得的纳米多孔电极.CO汽提实验和甲醇氧化反应测试上述纳米多孔材料的电催化活性.结果表明,添加Ir极大改善纳米多孔PtRu的活性.采用现场电化学FTIR光谱技术研究纳米多孔Pt,PtRu及PtRuIr电极上的甲醇氧化反应,以进一步揭示这种显著增强效应的成因.  相似文献   

8.
The manipulation of a nanoconfined fluid flow is a great challenge and is critical in both fundamental research and practical applications. Compared with chemical or biochemical stimulation, the use of temperature as controllable, physical stimulation possesses huge advantages, such as low cost, easy operation, reversibility, and no contamination. We demonstrate an elegant, simple strategy by which temperature stimulation can readily manipulate the nanoconfined water flow by tuning interfacial and viscous resistances. We show that with an increase in temperature, the water fluidity is decreased in hydrophilic nanopores, whereas it is enhanced by at least four orders of magnitude in hydrophobic nanopores, especially in carbon nanotubes with a controlled size and atomically smooth walls. We attribute these opposing trends to a dramatic difference in varying surface wettability that results from a small temperature variation.  相似文献   

9.
In the last decade, dealloying has become a popular and effective strategy to fabricate nanoporous metals used in electrochemical applications such as electrocatalysis and energy storage. This review article summarizes the recent literature on dealloyed non-noble metals and oxides evaluated as lithium-ion battery anode materials. The importance of dealloying parameters to achieve desired pore and ligament sizes is emphasized. A future research roadmap is also provided.  相似文献   

10.
Physical and electrochemical features of nanoporous electrodes arising from their morphology are presented in this perspective. Although nanoporous electrodes have been used to enhance electrocatalysis for several decades, the origin of their capability was understood on the basis of enlarged surface area or crystalline facet. However, considerable attention should be paid to the fact that nano-confined space of nanoporous electrodes can significantly affect electrochemical efficiency. Molecular dynamics in nano-confined spaces is capable of offering much more chances of interaction between a redox molecule and an electrode surface. The mass transport in the nanoporous electrode depends on various pore characteristics such as size, shape, charge, connectivity, and symmetry as well as molecular properties such as size, charge, and kinetics. Moreover, when the pore size is comparable to the thickness of an electric double layer (EDL), the EDLs overlap in the porous structure so that electrochemically effective surface area is not the same as that of the real electrode surface. These unique properties come from simply nanoporous structure and suggest new opportunity to innovative electrocatalysts in the future.  相似文献   

11.
A new molecular dynamics simulation method, with coupling to external baths, is used to perform equilibrium simulations on polyamide-6,6 trimers nanoconfined between graphene surfaces, in equilibrium with the bulk polymer. The method is coupled with the reverse nonequilibrium molecular dynamics simulation technique to exchange heat in the direction normal to the surfaces. To be able to study the effect of confinement on the heat conductance in nanoconfined pores, in this work a number of simulations on systems with different pore sizes are done. It is concluded that the coefficient of heat conductivity depends on the degree of polymer layering between the surfaces and on the pore width. Our results further indicate a considerable temperature drop at the interface between the surfaces and polymer. The calculated Kapitza lengths depend on the intersurface distance and on the layering of the polymer nanoconfined between the surfaces.  相似文献   

12.
铝阳极氧化膜纳米孔阵列结构的自组织过程分析   总被引:10,自引:0,他引:10  
提出了在铝阳极氧化膜的生长过程中存在两种力的作用,一种是在阻挡层形成时就已经存在的由于基体铝与氧化铝之间晶格不匹配产生的内应力的作用,另一种是随着纳米孔的形成,存在于纳米孔内壁的表面张力的作用.铝阳极氧化膜纳米孔阵列的自组织过程是在这两种力的共同作用下进行的.这两种力的大小随着纳米孔形貌的变化而改变,当铝阳极氧化膜中的纳米孔呈规则的六角排列时,这两种力达到平衡,此时体系的能量也最低.  相似文献   

13.
Xiao ZHAI  Yi DING 《物理化学学报》2017,33(7):1366-1378
燃料电池是将化学能直接转化为电能的能量转换装置,具有绿色、高效、便携等特点。对于大多数使用氧气或者空气为氧化剂的燃料电池而言,其阴极氧还原反应动力学缓慢、稳定性差是阻碍该技术走向商业化的主要因素,因此开发高催化活性和良好稳定性的低成本氧还原催化剂非常重要。基于脱合金法制得的纳米多孔金属是一类新型的宏观尺度纳米结构材料,其独特的开放型孔道结构、优良的导电性和结构的可调控性使其在电催化相关领域具有广泛的应用。本文侧重于讨论纳米多孔金属作为氧还原催化剂时所展示的一系列结构特性,及其在发展新一代高性能一体化燃料电池催化剂中所展示的机会。  相似文献   

14.
The influence of hydrofluoric acid (HF) concentration and applied potential on the processes of anodic oxidation of Nb in sulphuric acid solution was studied by chronoamperometry, electrochemical impedance spectroscopy and scanning electron microscopy. During the first stage of the process, a compact barrier film is formed. On top of this film, a porous overlayer starts to form, then the nanopores grow into an ordered nanostructure. Subsequently, secondary 3D flower-shaped structures begin to form. These structures gradually spread all over the surface as an irregular multilayer film. The rates of the process of porous overlayer formation and subsequent growth of nanopore arrays increase with applied potential as well as with the HF concentration. The films have been characterised ex situ by electrochemical impedance spectroscopy at open circuit potential and capacitance vs. potential measurements to follow the different stages of nanoporous film formation with electrochemical methods. The impedance spectra and capacitance vs. potential curves have been interpreted using previously proposed models for the amorphous semiconductor/electrolyte interface. An attempt to rationalise the mechanism of nanoporous layer growth is presented by using the conceptual views of the mixed-conduction model and recent ideas for porous film formation on valve metals.  相似文献   

15.
Nanochannel array plastics with tailored surface chemistry   总被引:1,自引:0,他引:1  
The utilization of nanoporous substrates in applications such as selective ion transport, biomolecule separation, seeded templating, and catalysis necessitates the ability to efficiently control pore surface properties. We approached this task by preparing nanoporous polymer monoliths from ABC triblock copolymer precursors that assemble into a cylindrical morphology, where the A block constitutes matrix, C is the removable minor component, and B provides the functionality on the surface of the pores. Polystyrene-polydimethylacrylamide-polylactide (PS-PDMA-PLA) triblock copolymers were prepared by a combination of controlled ring-opening and free-radical polymerization techniques. After selective etching of the PLA cylinders from shear-aligned monoliths, a nanoporous polystyrene matrix containing a hexagonally packed array of hydrophilic, PDMA-coated channels was obtained. Extremely high degrees of alignment and order could be attained, and nanoporous substrates with second-order orientation factors of as high as 0.96 were prepared. PDMA brushes inside the pores were then hydrolyzed in a controlled fashion to introduce a desired number of carboxylic acid groups to the internal pore surface. Carbodiimide mediated couplings with amines were then used to confirm the accessibility of the interior acidic groups and to render materials with different functional content. This modular approach allows for the convenient preparation of functionalized nanoporous materials from a single block copolymer precursor.  相似文献   

16.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

17.
This paper describes the fabrication and electrochemical behavior of hierarchical nanoporous gold film (HNPGF) electrode by multi-cyclic electrochemical co-alloying/dealloying of two sacrifice metals (Zn and Sn) with gold. Different from the nanoporous gold film (NPGF) formed in the electrolyte of ZnCl2 in benzyl alcohol, the HNPGF obtained possessed special hierarchical porous structure and extra high roughness factor of 1250. This study reveals that hierarchical porous gold film electrodes are promising for catalysis.  相似文献   

18.
This study demonstrates a novel approach to synthesis methods for core-shell nanoparticle assembly using nanoparticle trapping at an interface and subsequent transfer onto a substrate for electrochemical ultrathin layer coating. The transferred nanoparticle array can have a tunable surface area depending on the number of transferred layers. Subsequently coating the surface with Pt-group metals that behave as an ultrathin film provides electrocatalytic activities with respect to a variety of chemical reactions, depending on the properties of the selected coating materials. The transferred 3D Au nanoparticle arrays act as a high-surface-area platform for the diversity of overlayer materials. The resulting 3D core-shell nanoparticle films could be utilized as a highly active electrocatalysis and Raman scattering substrate. The approach provides a versatile and convenient synthesis route to new nanoporous material with tailorable pore structure and material properties through bottom-up assembly.  相似文献   

19.
In this work, a series of nanoporous silica materials have been prepared as adsorbents for volatile (?)-menthol, a molecule widely used in food, pharmacy, and cosmetics. The isothermal release properties of (?)-menthol have been investigated and correlated with the structural parameters of nanoporous absorbents. A rotary evaporation method is used to effectively load (?)-menthol into the nanopores of adsorbents and to prevent the whisker growth during the adsorption. It is demonstrated that the pore size, structure, wall thickness and surface functionality of nanoporous adsorbents are four important parameters to influence the isothermal release of (?)-menthol. By tuning these parameters of nanoporous silica adsorbents, controlled release of (?)-menthol can be achieved. A vesicular silica material with thick wall and hydrophobic functional groups is shown to possess the slowest release performance. Our contribution provides important knowledge for the future applications of nanoporous silica materials in pharmacy and cosmetics.  相似文献   

20.
Nanoporous zinc oxide (ZnO) is prepared by a hydrothermal method followed by thermal decomposition for electrocatalytic reduction of CO2. In situ X-ray absorption spectroscopy results indicate that ZnO is reduced to Zn under the electrolysis conditions for catalyzing CO2 electroreduction. The reduced nanoporous ZnO exhibits obviously higher CO Faradaic efficiency and current density than commercial Zn foil with a maximum CO Faradaic efficiency of 92.0%, suggesting that the nanoporous structure facilitates electrocatalytic reduction of CO2 over reduced nanoporous ZnO, probably due to increased surface area and more coordination unsaturated surface atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号