首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Capillary electrophoresis (CE) was employed for the determination of thermodynamic acidity constants (pKa) and actual ionic mobilities of polycationic antimicrobial peptides (AMPs). The effective electrophoretic mobilities of AMPs were measured by CE in a series of the background electrolytes within a wide pH range (2.00–12.25), at constant ionic strength (25 mM) and ambient temperature, using polybrene coated fused silica capillaries to suppress sorption of cationic AMPs to the capillary wall. Eventually, Haarhoff–Van der Linde peak fitting function was used for the determination of correct migration times of some AMPs peaks that were distorted by electromigration dispersion. The measured effective mobilities were corrected to 25°C. Mixed acidity constants, , and actual ionic mobilities, mi, of AMPs were determined by the nonlinear regression analysis of pH dependence of their effective mobilities. The values were recalculated to thermodynamic pKas using the Debye–Hückel theory. Thermodynamic pKa of imidazolium group of histidine residues was found to be in the range 3.72–4.98, pKa of α‐NH3+ group was in the range 6.14–6.93, and pKa of ε‐NH3+ group of lysine spanned the interval 7.26–9.84, depending on the particular amino acid sequence of the AMPs. Actual ionic mobilities of AMPs with positive charges from one to six elementary units achieved values (9.8 – 36.5) × 10?9 m2V?1s?1.  相似文献   

2.
It is known that the eletroosmotic (EO) flow rate through a nano‐scale channel is extremely small. A channel made of a periodic array of slats is proposed to effectively promote the EO pumping, and thus greatly improve the EO flow rate. The geometrically simple array is complicated enough that four length scales are involved: the vertical period 2L, lateral period 2aL, width of the slat 2cL as well as the Debye length . The EO pumping rate is determined by the normalized lengths: a, c, or the perforation fraction of slats and the dimensionless electrokinetic width . In a nano‐scale channel, K is of order unity or less. EO pumping in both longitudinal and transverse directions (denoted as longitudinal EO pumping (LEOP) and transverse EO pumping (TEOP), respectively) is investigated by solving the Debye–Hückel approximation and viscous electro‐kinetic equation. The main findings include that (i) the EO pumping rates of LEOP for small K are remarkably improved (by one order of magnitude) when we have longer slats () and a large perforation fraction of slats (η > 0.7); (ii) the EO pumping rates of TEOP for small K can also be much improved but less significantly with longer slats and a large perforation fraction of slats. Nevertheless, it must be noted that in practice K cannot be made arbitrarily small as the criterion of for the reference potential at the channel center put lower bounds on K; in other words, there are geometrical limits for the use of the Poisson–Boltzmann equation.  相似文献   

3.
Electrophoresis 2014, 35, 1144–1151. DOI: 10.1002/elps.201300501 The center stage of nanopore sequencing is to extract gene information from the translocation of DNA through a nanopore. Graphene nanopore technology has been promising ultra‐high resolution for gene sequencing owing to the atomic thickness and excellent electronic properties of the graphene monolayer. By filtering out the thermal noise of ionic current, the instantaneous conformational variations of DNA in a graphene nanopore could be unveiled from undulates of the blocked ionic current, because of the spatial blockage effect of DNA against ionic migration. It supplies a theoretical basis for the monitor of dynamical information of DNA in a graphene nanopore during sequencing from the ionic current fluctuation.

  相似文献   


4.
5.
《Electrophoresis》2017,38(9-10):1310-1317
In this paper, we investigate a novel alternating current electrothermal (ACET) micromixer driven by a high efficiency ACET micropump. The micromixer consists of thin film asymmetric pairs of electrodes on the microgrooved channel floor and array of electrode pairs fabricated on the top wall. By connecting electrodes with AC voltage, ACET forces are induced. Asymmetric microgrooved electrodes force the fluids along the channel, while lateral vortex pairs are generated by symmetric electrode pairs located on the top wall. Waviness of the floor increases contact area between two confluent streams within a narrow confinement. An active mixer operates as a semi active semi passive mixer. Effects of various parameters are investigated in details in order to arrive at an optimal configuration that provides for efficient mixing as well as appreciable transport. It is found that using a specific design, uniform and homogeneous mixing quality with mixing efficiency of 97.25% and flow rate of per unit width of the channel can be achieved.  相似文献   

6.
By increasing the number of floating electrodes or enlarging the width of single floating electrode, this work provides effective ways to strongly improve the particle trapping performance of induced charge electroosmosis (ICEO). Particle trapping with double or triple separate narrow floating electrodes increases the effective actuating range of ICEO flow and therefore enhance the optimum trapping ability to be 1.63 or 2.34 times of that with single narrow electrode (width of ), and the ideal trapping frequency is independent of the electrode number due to the mutual independence of electrochemical ion relaxation over each electrode. Furthermore, using a single wide floating electrode with the effective width equal to three separate narrow floating electrodes () instead of a single narrow one slightly lowers the ideal trapping frequency due to an increase in the characteristic polarization length, but the trapping performance is only up to 1.59 times of that with original single narrow electrode, implying that vertical channel confinement effect may severely suppresses the effective actuating range of ICEO flow and renders the trapping performance not as expected. Trapping experiments over wide floating electrode with different channel height were carried out, showing that the trapping performance increases by correctly increasing the channel height.  相似文献   

7.
《Electrophoresis》2018,39(12):1497-1503
Fully or partially charged oligosaccharide molecules play a key role in many areas of biology, where their fine structures are crucial in determining their functionality. However, the separation of specific charged oligosaccharides from similar moieties that typically coexist in extracted samples, even for those that are unbranched, and in cases where each saccharide moiety can only carry a single charge or not, is far from trivial. Typically such molecules are characterized by a degree of polymerization n and a number m (and distribution) of charged residues, and must be separated from a plethora of similar species possessing different combinations of n and m. Furthermore, the separation of the possible isomers of each species of fixed n and m is a formidable challenge to analytical chemists. Herein, we report the results of molecular dynamics simulations that have been performed in order to calculate the free solution electrophoretic mobilities of galacturonides and charged oligosaccharides derived from digests of the important plant cell‐wall polysaccharide pectin. The simulations are compared with an experiment and are found to correctly predict the loss of resolution of fully charged species above a critical degree of polymerization n and the ionic strength dependence of the electrophoretic mobilities of different partially charged oligosaccharides. It is expected that having a predictive tool for the calculation of the electrophoretic mobilities of differently charged oligosaccharide species in hand will allow experimental conditions that optimize the resolution of particular species to be ascertained and understood.  相似文献   

8.
The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation, , and rotation, , are small compared to unity. Here, a is radius of the particle; D is the ionic diffusion coefficient; and , where U and Ω are the rectilinear and angular velocities of the particle, respectively. Perturbation expansions for small and are employed to calculate the nonequilibrium structure of the cloud, whence the force and torque on the particle are determined. In particular, we predict that the sphere experiences a force orthogonal to its directions of translation and rotation. This “lift” force arises from the nonlinear distortion of the cloud under the combined actions of particle translation and rotation. The lift force is given by . Here, ε is the permittivity of the electrolyte; is the Debye length; and is a negative function that decreases in magnitude with increasing . The lift force implies that an unconstrained particle would follow a curved path; an electrokinetic analog of the inertial Magnus effect. Finally, the implication of the lift force on cross‐streamline migration of an electrophoretic particle in shear flow is discussed.  相似文献   

9.
Complexation of divalent cations (Mg2+, Co2+, Ni2+, Cu2+, Cd2+) by selenate ligand was studied by ACE (UV indirect detection) in 0.1 mol/L NaNO3 ionic strength solutions at various temperatures (15, 25, 35, 45 and 55°C). For each solution, a unique peak was observed as a result of a fast equilibrium between the free ion and the complex (labile systems). The migration time corresponding to this peak changed as a function of the solution composition, namely the free and complexed metal concentrations, according to the complexation reactions. The results confirmed the formation of a unique 1:1 complex for each cation. The thermodynamic parameters were fitted to the experimental data at 0.1 mol/L ionic strength: (25°C) = ?(6.5 ± 0.3), ?(7.5 ± 0.3), ?(7.7 ± 0.3), ?(7.7 ± 0.3), and –(8.1 ± 0.3) kJ/mol and = 2.5 ± 0.2, 4.7 ± 0.4, 4.5 ± 0.6, 8.4 ± 1.1, and 7.2 ± 0.6 kJ/mol for M2+ = Mg2+, Co2+, Ni2+, Cu2+, and Cd2+, respectively. Complexes with alkaline earth and transition metal cations could be distinguished by their relative stabilities. The effect of the ionic medium was treated using the specific ion interaction theory and the thermodynamic parameters at infinite dilution were compared to previously published data on metal–selenate, metal–sulfate, and metal–chromate complexes.  相似文献   

10.
Retention properties of 79 fungal metabolites (including neutral, acidic, basic, and amphoteric compounds) were evaluated on distinct mixed-mode reversed-phase/weak anion exchange (RP/WAX)-type stationary phases by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) in gradient as well as in isocratic elution mode. The RP/WAX separation materials were prepared by functionalising thiol-modified silica with N-(10-undecenoyl)-3-aminoquinuclidine and N-(10-undecenoyl)-3-alpha-aminotropane, respectively. To evaluate complementarity in chromatographic selectivity the physico-chemically heterogeneous solute set was analysed also on a RP phase (C(18)), an amino-type WAX phase, and a commercially available RP/WAX-like mixed-mode phase. Analytes may interact with the RP/WAX ligands via (attractive/repulsive) ionic, RP-like hydrophobic, as well as hydrophilic (HILIC) retention mechanisms. Individual interactive increments were found to be basically controlled by the nature and amount of organic modifier, pH value of eluent, and ionic strength of buffer additives. It could be demonstrated that RP/WAX columns offer the potential to separate compounds by exploiting a combination of various chromatographic interaction modes, which is not accessible with conventional RP and WAX columns. Such multi-modal properties increase both versatility and degrees of freedom for adjustment of chromatographic selectivity. For example, highly polar mycotoxins such as moniliformin were well retained on RP/WAX-type phases without compromising RP-selectivity for neutral (e.g. aflatoxins) and most basic solutes (e.g. epimer separation of ergot alkaloids) under fully MS-compatible conditions like a hydro-organic eluent with acetonitrile as organic modifier and an acetic acid/ammonium acetate buffer. Flexibility of the employed mixed-mode separation materials may be of value particularly for LC-ESI-MS/MS-based bioanalytics involving analytes with widely varying physico-chemical properties or applications prone to matrix effects.  相似文献   

11.
12.
A soft nanochannel involves a soft interface that contains a polyelectrolyte layer (PEL) sandwiched between a rigid surface and a bulk electrolyte solution. Mass transfer of a neutral solute in a combined electroosmotic and pressure driven flow through a polyelectrolyte grafted charged nanochannel with porous wall is presented in this work. Assuming the PEL as fixed charged layer and PEL-electrolyte interface as a semi-penetrable membrane, analytical solutions were obtained for potential distributions (for small wall potential). Velocity profiles were also derived in the same domains, for both inside and outside the PEL. Convective-diffusive species balance equation was semi-analytically solved inside the PEL. Expression of length averaged Sherwood number was also obtained and effects of different parameters, namely, drag parameter (α), Debye parameter , and PEL thickness were studied in detail. The variation of permeate concentration and permeation flux across the porous wall was obtained.  相似文献   

13.
We consider a modified electrokinetic model to study the electrophoresis of a hydrophobic particle by considering the finite sized ions. The mathematical model adopted in this study incorporates the ion steric repulsion, ion-solvent interactions as well as Maxwell stress on the electrolyte. The dielectric permittivity and viscosity of the electrolyte is considered to vary with the local ionic volume fraction. Based on this modified model for the electrokinetics we have analyzed the electrophoresis in a single as well as mixture of electrolytes of monovalent and non- z : z $z:z$ electrolytes. The dependence of viscosity on local ionic volume fraction modifies the hydrodynamic drag as well as diffusivity of ions, which are ignored in existing studies on electrophoresis. A simplified model for electrophoresis of a hydrophobic particle incorporating the ion steric repulsion and ion-solvent interactions is developed based on the first-order perturbation on applied electric field. This simplified model is established to be efficient for a Debye layer thinner than the particle size and a smaller range of slip length. This model can be implemented for any number of ionic species as well as non- z : z $z:z$ electrolytes. It is established that the ion steric interactions and dielectric decrement creates a counterion saturation in the Debye layer leading to an enhanced mobility compared to the standard model. However, experimental data for non-dilute cases often under predicts the theoretically determined mobility. The present modified model fills this lacuna and demonstrate that the consideration of finite ion size modifies the medium viscosity and hence, ionic mobility, which in combination lowers the mobility value.  相似文献   

14.
Polyacrylamide gel electrophoresis is commonly used to characterize the chain length of polyphosphates (polyP), more generally called condensed phosphates. After separation, nonradioactive, optical polyP staining is limited to chain lengths greater than 15 PO 3 ${\rm{PO}}_3^ - $ monomers with toluidine blue or 4′,6-diamidino-2-phenylindole. PolyP chain lengths longer than 62 PO 3 $\;{\rm{PO}}_3^ - $ monomers were correlated to the shortest DNA ladders. In this study, synthetic linear polyPs (Sigma-Aldrich “Type 45”, estimated mean length of 45 PO 3 ${\rm{PO}}_3^ - $ monomers), trimetaphosphate (trimetaP: 3 PO 3 ${\rm{PO}}_3^ - $ ring), tripolyphosphate (tripolyP), pyrophosphate (PPi), and inorganic orthophosphate (o-Pi) were visualized after separation by an in situ hydrolytic degradation process to o-Pi that was subsequently stained with methyl green. Statistically insignificant migration reduction of synthetic short-chain polyP after perchloric acid or phenol–chloroform extraction was confirmed with the Friedman test. 31P diffusion–ordered NMR spectroscopy confirmed that extraction also reduced PPi diffusivity by <10%. Linear regression between the Rf peak migration value and the logarithm of synthetic polyP molecular weights enabled estimation of extracted polyP chain lengths from 2 to 45 PO 3 ${\rm{PO}}_3^ - $ monomers. Linear polyP extracts from Saccharomyces cerevisiae grown in aerobic conditions were generally shorter than extracts cultured in anaerobic conditions. Extractions from both aerobic and anaerobic S. cerevisiae included tripolyP and o-Pi, but no PPi.  相似文献   

15.
We derive an approximate analytical representation of the conductivity for a 1D system with porous and charged layers grafted onto parallel plates. Our theory improves on prior work by developing approximate analytical expressions applicable over an arbitrary range of potentials, both large and small as compared to the thermal voltage . Further, we describe these results in a framework of simplifying nondimensional parameters, indicating the relative dominance of various physicochemical processes. We demonstrate the efficacy of our approximate expression with comparisons to numerical representations of the exact analytical conductivity. Finally, we utilize this conductivity expression, in concert with other components of the electrokinetic coupling matrix, to describe the streaming potential and electroviscous effect in systems with porous and charged layers.  相似文献   

16.
Heterogeneity in organelle size has been associated with devastating human maladies such as neurodegenerative diseases or cancer. Therefore, assessing the size-based subpopulation of organelles is imperative to understand the biomolecular foundations of these diseases. Here, we demonstrated a ratchet migration mechanism using insulator-based dielectrophoresis in conjunction with a continuous flow component that allows the size-based separation of submicrometer particles. The ratchet mechanism was realized in a microfluidic device exhibiting an array of insulating posts, tailoring electrokinetic and dielectrophoretic transport. A numerical model was developed to elucidate the particle migration and the size-based separation in various conditions. Experimentally, the size-based separation of a mixture of polystyrene beads (0.28 and 0.87 μ $\umu $m) was accomplished demonstrating good agreement with the numerical model. Furthermore, the size-based separation of mitochondria was investigated using a mitochondria mixture isolated from HepG2 cells and HepG2 cells carrying the gene Mfn-1 knocked out, indicating distinct size-related migration behavior. With the presented continuous flow separation device, larger amounts of fractionated organelles can be collected in the future allowing access to the biomolecular signature of mitochondria subpopulations differing in size.  相似文献   

17.
The starting electrophoretic motion of a porous, uniformly charged, spherical particle, which models a solvent-permeable and ion-penetrable polyelectrolyte coil or floc of nanoparticles, in an arbitrary electrolyte solution due to the sudden application of an electric field is studied for the first time. The unsteady Stokes/Brinkman equations with the electric force term governing the fluid velocity fields are solved by means of the Laplace transform. An analytical formula for the electrophoretic mobility of the porous sphere is obtained as a function of the dimensionless parameters , , , and , where a is the radius of the particle, κ is the Debye screening parameter, λ is the reciprocal of the square root of the fluid permeability in the particle, ρp and ρ are the mass densities of the particle and fluid, respectively, ν is the kinematic viscosity of the fluid, and t is the time. The electrophoretic mobility normalized by its steady-state value increases monotonically with increases in and , but decreases monotonically with an increase in , keeping the other parameters unchanged. In general, a porous particle with a high fluid permeability trails behind an identical porous particle with a lower permeability and a corresponding hard particle in the growth of the normalized electrophoretic mobility The normalized electrophoretic acceleration of the porous sphere decreases monotonically with an increase in the time and increases with an increase in from zero at .  相似文献   

18.
Electroosmotic flow is an efficient transportation technology driven by applying an external electric field across the microchannel, which has a great potential for future application. This work is presented to study the unsteady electroosmotic flow of viscoelastic fluids combined with a constant pressure gradient and a vertical magnetic field through a parallel plate microchannel. For the reason that the upper and bottom walls of the parallel plate microchannel in microfluidic devices can be made of different materials, this leads to different hydrophobic properties, asymmetric zeta wall potentials, and different slip boundary conditions. The Navier slip model with different slip coefficients at walls is considered. The generalized Maxwell fluid with fractional derivative is adopted for the constitutive equation of the fluid. The analytical and numerical solutions of velocity are derived by employing the integral transform method and finite difference method, respectively. Excellent agreement is found between the numerical solutions and analytical solutions. Finally, the effects of fractional parameter , relaxation time , slip coefficients and , the ratio of wall zeta potentials , Hartmann number , and electrical field strength parameter on velocity profiles are interpreted graphically in detail.  相似文献   

19.
Nonaqueous capillary electrophoresis (NACE) using methanol (MeOH) as a solvent of the BGEs and quantum mechanical density functional theory (DFT) have been applied to determine the thermodynamic acidity (ionization) constants (pKa) of mono- and diaza[5]helicenes, mono- and diaza[6]helicenes, and their dibenzo derivatives in MeOH and water. First, the mixed acidity constants, , of ionogenic pyridinium groups of azahelicenes and their derivatives in MeOH were obtained by nonlinear regression analysis of pH dependence of their effective electrophoretic mobilities. The effective mobilities were measured by NACE in a large series of methanolic BGEs within a wide conventional pH range (pHMeOH 1.6–12.0) and at ambient temperature (21–26°C) in a home-made CE device. Prior to mixed acidity constant calculation, the effective mobilities were corrected to reference temperature (25°C) and constant ionic strength (25 mM). Then, the mixed acidity constants were recalculated to the thermodynamic acidity constants pKa,MeOH by the Debye–Hückel theory of nonideality of electrolyte solutions. Finally, from the methanolic thermodynamic pKa,MeOH values, the aqueous thermodynamic constants were estimated using the empirical relations between methanolic and aqueous acidity constants derived for structurally related pyridine derivatives. Depending on the number and position of the nitrogen atoms in their molecules, the analyzed azahelicenes were found to be weak to moderate bases with methanolic pKa,MeOH in the range 2.01–8.75 and with aqueous in the range 1.67–8.28. The thermodynamic pKa,MeOH obtained by the DFT calculations were in a good agreement with those determined experimentally by NACE.  相似文献   

20.
The electrophoretic mobility of micron-scale particles is of crucial importance in applications related to pharmacy, electronic ink displays, printing, and food technology as well as in fundamental studies in these fields. Particle mobility measurements are often limited in accuracy because they are based on ensemble averages and because a correction for electroosmosis needs to be made based on a model. Single-particle approaches are better suited for examining polydisperse samples, but existing implementations either require multiple measurements to take the effect of electroosmosis into account or are limited in accuracy by short measurement times. In this work, accurate characterization of monodisperse and polydisperse samples is achieved by measuring the electrophoretic mobility on a particle-to-particle basis while suppressing electroosmosis. Electroosmosis can be suppressed by measuring in the middle of a microchannel while applying an AC voltage with a sufficiently high frequency. An accurate measurement of the electrophoretic mobility is obtained by analyzing the oscillating particle motion for per particle with a high-speed camera measuring at , synchronized to the applied electric field. Attention is paid to take into account the effect of the rolling shutter and the non-uniform sampling in order to obtain the accurate amplitude and phase of the electrophoretic mobility. The accuracy of method is experimentally verified and compared with a commercial apparatus for polystyrene microspheres in water. The method is further demonstrated on a range of particle materials and particle sizes and for a mixture of positively and negatively charged particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号