首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The 1,3‐dipolar cycloaddition of 4‐chlorobenzonitrile oxide to the unsaturated system of (?)‐(R)‐carvone occurred exclusively at C(8) to give a new isoxazoline derivative. This derivative reacts with NH2OH to yield a new heterocycle, observed for the first time. On the other hand, the addition of 4‐chlorobenzonitrile oxide to the unsaturated lactone (?)‐4aα,7α,7aβ‐nepetalactone gave, in a good yield, also a new heterocycle, again obtained for the first time. The terpenoid (?)‐(R)‐carvone and iridoid (?)‐4aα,7α,7aβ‐nepetalactone were isolated from Moroccan species Mentha viridis (L.) and Nepeta tuberosa (L.), respectively. The new heterocycles obtained were identified by combination of chromatographic and spectroscopic methods.  相似文献   

2.
The asymmetric synthesis of two naturally occurring 5‐hydroxy‐γ‐butyrolactones, (4R,5R)‐5‐hydroxy‐4‐decanolide ( 1a ) and (?)‐muricatacin ( 2 ), is described using a general alkyne‐mediated strategy. The key steps involved are Sonogashira coupling for the desired carbon‐chain extension followed by Sharpless asymmetric dihydroxylation to construct the hydroxy‐lactone framework.  相似文献   

3.
Treatment of cyclohexadecanone ( 1g ; with I2 (2.2 mol‐euqiv.) and KOH in MeOH) furnished the unsaturated (Z)‐ester 2g in 83% yield, via a stereospecific Favorskii rearrangement (Scheme 1). Further treatment with 3‐chloroperbenzoic acid (m‐CPBA) afforded the unreported epoxy ester 3g (88% yield), which was cleaved in 33% yield to Exaltone® (=cyclopentadecanone; 1f ) with NaOH in MeOH/H2O and then HCl at 65°. This methodology was similarly extended to higher (C17) and lower (C15 to C11) cyclic ketone analogues, as well as regioselectively to (?)‐(R)‐muscone ( 5c ) and homomuscone ( 5f ) (Scheme 2). Olfactive properties of the corresponding macrocyclic 1‐oxaspiro[2,n]alkanes and ‐alkenes 4 and 8 , resulting from a Corey? Chaykovsky oxiranylation, are also presented.  相似文献   

4.
The total synthesis of (?)‐pinellic acid with (9S,12S,13S)‐configuration and its (9R,12S,13S)‐diastereoisomer was achieved in high overall yields from a common intermediate derived from (+)‐L ‐diethyl tartrate.  相似文献   

5.
The first total synthesis of the natural product (?)‐(19R)‐ibogamin‐19‐ol ((?)‐ 1 ) is reported (biogenetic atom numbering). Starting with L ‐glutamic acid from the chiral pool and (2S)‐but‐3‐en‐2‐ol, the crucial aliphatic isoquinuclidine (= 2‐azabicyclo[2.2.2]octane) core containing the entire configurational information of the final target was prepared in 15 steps (overall yield: 15%). The two key steps involved a highly effective, self‐immolating chirality transfer in an Ireland–Claisen rearrangement and an intramolecular nitrone‐olefin 1,3‐dipolar cycloaddition reaction (Scheme 3). Onto this aliphatic core was grafted the aromatic moiety in the form of N(1)‐protected 1H‐indole‐3‐acetic acid by application of the dicyclohexylcarbodiimide (DCC) method (Scheme 4). Four additional steps were required to adjust the substitution pattern at C(16) and to deprotect the indole subunit for the closure of the crucial 7‐membered ring present in the targeted alkaloid family (Schemes 4 and 5). The spectral and chiroptical properties of the final product (?)‐ 1 matched the ones reported for the naturally occurring alkaloid, which had been isolated from Tabernaemonatana quadrangularis in 1980. The overall yield of the entire synthesis involving a linear string of 20 steps amounted to 1.9% (average yield per step: 82%).  相似文献   

6.
An enantioselective total synthesis of (?)‐cladospolide B was described. The key steps in this synthesis include(a) a Sharpless asymmetric dihydroxylation to elaborate syn diol at C‐4 and C‐5 positions; (b) a Mitsunobu esterification to reverse the configuration at C‐11 from (S) to (R); and (c) a ring‐closing metathesis to access the 12‐membered macrocyclic ring.  相似文献   

7.
An efficient and short total synthesis of (?)‐cleistenolide ( 1 ) from D ‐mannitol with an overall yield of 23.6% is described. The chiron approach for the synthesis of (?)‐cleistenolide involves a one‐C‐atom Wittig olefination, a selective allylic triethylsilyl protection, and a Grubbs‐catalyzed ring‐closure‐metathesis (RCM) reaction as the key steps.  相似文献   

8.
The first asymmetric total synthesis of (?)‐ligustiphenol is reported. The key step was conducted by exploiting a steric hindrance effect to control the formation of the adduct in a nucleophilic α‐Li‐phenolate addition reaction to the intermediate α‐oxo (?)‐menthyl ester. The synthesis is concise and feasible for the construction of analogous compounds and investigation of their biological activity.  相似文献   

9.
A highly enantiospecific, azide‐free synthesis of (?)‐(R)‐ and (+)‐(S)‐piperidin‐3‐ol in excellent yield was developed. The key step of the synthesis involves the enantiospecific ring openings of enantiomerically pure (R)‐ and (S)‐2‐(oxiran‐2‐ylmethyl)‐1H‐isoindole‐1,3(2H)‐diones with the diethyl malonate anion and subsequent decarboxylation.  相似文献   

10.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
An asymmetric total synthesis of the guaiane sesquiterpene (?)‐englerin A, a potent and selective inhibitor of the growth of renal cancer cell lines, was accomplished. The basis of the approach is a highly diastereo‐ and enantioselective carbonyl ylide cycloaddition with an ethyl vinyl ether dipolarophile under catalysis by dirhodium(II) tetrakis[N‐tetrachlorophthaloyl‐(S)‐tert‐leucinate], [Rh2(S‐TCPTTL)4], to construct the oxabicyclo[3.2.1]octane framework with concomitant introduction of the oxygen substituent at C9 on the exo‐face. Another notable feature of the synthesis is ruthenium tetraoxide‐catalyzed chemoselective oxidative conversion of C9 ethyl ether to C9 acetate.  相似文献   

12.
In the two‐dimensional (2D) homochiral structure of [cadmium(II) bis(S‐(?)‐lactate)]n, the lactate ligand adopts a µ3‐bridging mode to connect two cadmium atoms, leading to the formation of a 2D network. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A new synthesis of (?)‐(R)‐muscone ((R)‐ 1 ) by means of enantioselective protonation of a bicyclic ketone enolate as the key step (see 6 →(S)‐ 4 in Scheme 2) is presented. The C15 macrocyclic system is obtained by ozonolysis (Scheme 7).  相似文献   

14.
A formal synthesis of (?)‐cephalotaxine ( 1 ) by means of a highly stereoselective radical carboazidation process is reported. The synthesis begins with the protected (S)‐cyclopent‐2‐en‐1‐ol derivative 10 and uses the concept of self‐reproduction of a stereogenic center (Schemes 5 and 6). For this purpose, the double bond adjacent to the initial chiral center in 10 is converted into an acetonide after stereoselective dihydroxylation. The initial alcohol function is used to build an exocyclic methylene group suitable for the carboazidation process 8 → 7 (Scheme 7). Finally the protected diol moiety is converted back to an alkene ( 14 → 15 → 6 ) and used for the formation of ring B via a Heck reaction ( 6 →(?)‐ 16 ; Scheme 8).  相似文献   

15.
An efficient route for the synthesis of (?)‐physostigmine analogs 1a – 1g and 2a – 2k is described. Analogs 1a – 1g were synthesized via copper(I)‐catalyzed cycloaddition between the optically pure azide 10 and a variety of alkynes. Similarly, analogs 2a – 2k were prepared through ‘three‐component Huisgen cycloaddition’ using various amines, propargyl bromine, and 10 in H2O. Facile preparation of 10 via MacMillan's organocatalysis has made it possible to generate a great diversity of natural product‐like compounds that can be screened for anti‐Alzheimer's effects.  相似文献   

16.
The two epimers (?)‐ 1a and (?)‐ 1b of the macrocyclic lactam alkaloid 3‐hydroxycelacinnine with the (2R,3R) and (2R,3S) absolute configurations, respectively, were synthesized by an alternative route involving macrocyclization with the regio‐ and stereoselective oxirane‐ring opening by the terminal amino group (Schemes 2 and 6). Properly N‐protected chiral trans‐oxirane precursors provided (2R,3R)‐macrocycles after a one‐pot deprotection‐macrocyclization step under moderate dilution (0.005–0.01M ). The best yields (65–85%) were achieved with trifluoroacetyl protection. Macrocyclization of the corresponding cis‐oxiranes was unsuccessful for steric reasons. Inversion at OH? C(3) via nucleophilic displacement of the cyclic sulfamidate derivative with NaNO2 led to (2R,3S)‐macrocycles. The synthesized (?)‐(2R,3S)‐3‐hydroxycelacinnine ((?)‐ 1b ) was identical to the natural alkaloid.  相似文献   

17.
18.
The stereoselective formal synthesis of (?)‐cyclaradine from the inexpensively available starting material L ‐glutamic acid is described, using Eschenmoser's reagent, and applying Luche reduction, Grignard reaction, and ring closing metathesis (RCM) as the key steps.  相似文献   

19.
A simple and efficient stereoselective linear approach to the total synthesis of (?)‐pinidinone has been accomplished starting from propane‐1,3‐diol, and employing Maruoka asymmetric allylation and Grubbs' olefin cross‐metathesis as the key steps.  相似文献   

20.
A facile and scalable methodology for the preparation of optically active (3S)‐1‐benzylpyrrolidin‐3‐ol ( 3 ), an important drug precursor, is reported. Starting from the naturally occurring alkaloid (?)‐vasicine ( 1 ), a major alkaloid of the plant Adhatoda vasica, 3 was obtained in 84% overall yield (Scheme 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号