首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The design of supramolecular motifs with tuneable stability and adjustable supramolecular polymerisation mechanisms is of crucial importance to precisely control the properties of supramolecular assemblies. This report focuses on constructing π-conjugated oligo(phenylene ethynylene) (OPE)-based one-dimensional helical supramolecular polymers that show a cooperative growth mechanism. Thus, a novel set of discotic molecules comprising a rigid OPE core, three amide groups, and peripheral solubilising wedge groups featuring C(3) and C(2) core symmetry was designed and synthesised. All of the discotic molecules are crystalline compounds and lack a columnar mesophase in the solid state. In dilute methylcyclohexane solution, one-dimensional supramolecular polymers are formed stabilised by threefold intermolecular hydrogen bonding and π-π interactions, as evidenced by (1) H?NMR measurements. Small-angle X-ray and light scattering measurements reveal significant size differences between the columnar aggregates of C(3) - and C(2) -symmetrical discotics, that is, the core symmetry strongly influences the nature of the supramolecular polymerisation process. Temperature-dependent CD measurements show a highly cooperative polymerisation process for the C(3) -symmetrical discotics. In contrast, the self-assembly of C(2) -symmetrical discotics shows a smaller enthalpy release upon aggregation and decreased cooperativity. In all cases, the peripheral stereogenic centres induce a preferred handedness in the columnar helical aggregates. Moreover, one stereogenic centre suffices to fully bias the helicity in the C(2) -symmetrical discotics. Finally, chiral amplification studies with the C(3) -symmetrical discotics were performed by mixing chiral and achiral discotics (sergeants-and-soldiers experiment) and discotics of opposite chirality (majority-rules experiment). The results demonstrate a very strong sergeants-and-soldiers effect and a rather weak majority-rules effect.  相似文献   

2.
A systematic study of the influence of solvent and the size of C3‐symmetric discotics on their supramolecular polymerization mechanism is presented. The cooperativity of the self‐assembly of the reported compounds is directly related to their gelation ability. The two series of C3‐symmetric discotics investigated herein are based on benzene‐1,3,5‐tricarboxamides (BTAs) and oligo(phenylene ethynylene)‐based tricarboxamides (OPE? TAs) that are peripherally decorated with achiral ( 1 a and 2 a ) or chiral N‐(2‐aminoethyl)‐3,4,5‐trialkoxybenzamide units ( 1 b and 2 b ). The supramolecular polymerization of compounds 1 a , b and 2 a , b has been exhaustively investigated in a number of solvents and by using various techniques: variable‐temperature circular dichroism (VT‐CD) spectroscopy, concentration‐dependent 1H NMR spectroscopy, and isothermal titration calorimetry (ITC). The supramolecular polymerization mechanism of compounds 2 is highly cooperative in solvents such as methylcyclohexane and toluene and is isodesmic in CHCl3. Unexpectedly, chiral compound 1 b is practically CD‐silent, in contrast with previously reported BTAs. ITC measurements in CHCl3 demonstrated that the supramolecular polymerization of BTA 1 a is isodesmic. These results confirm the strong influence of the π‐surface of the central aromatic core of the studied discotic and the branched nature of the peripheral side chains on the supramolecular polymerization. The gelation ability of these organogelators is negated in CHCl3, in which the supramolecular polymerization mechanism is isodesmic.  相似文献   

3.
Two novel nonsymmetrical disc‐shaped molecules 1 and 2 based on 3,3′‐bis(acylamino)‐2,2′‐bipyridine units were synthesized by means of a statistical approach. Discotic 1 possesses six chiral dihydrocitronellyl tails and one peripheral phenyl group, whereas discotic 2 possesses six linear dodecyloxy tails and one peripheral pyridyl group. Preorganization by strong intramolecular hydrogen bonding and subsequent aromatic interactions induce self‐assembly of the discotics. Liquid crystallinity of 1 and 2 was determined with the aid of polarized optical microscopy, differential scanning calorimetry, and X‐ray diffraction. Two columnar rectangular mesophases (Colr) have been identified, whereas for C3‐symmetrical derivatives only one Colr mesophase has been found. 1 In solution, the molecularly dissolved state in chloroform was studied with 1H NMR spectroscopy, whereas the self‐assembled state in apolar solution was examined with optical spectroscopy. Remarkably, these desymmetrized discotics, which lack one aliphatic wedge, behave similar to the symmetric parent compound. To prove that the stacking behavior of discotics 1 and 2 is similar to that of reported C3‐symmetrical derivatives, a mixing experiment of chiral 1 with C3‐symmetrical 13 has been undertaken; it has shown that they indeed belong to one type of self‐assembly. This helical J‐type self‐assembly was further confirmed with UV/Vis and photoluminescence (PL) spectroscopy. Eventually, disc 2 , functionalized with a hydrogen‐bonding acceptor moiety, might perform secondary interactions with molecules such as acids.  相似文献   

4.
New discotic nematic liquid crystals have been prepared through intermolecular hydrogen bonding between the core of 1,3,5-trihydroxybenzene (phloroglucinol, PG) or 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) and the peripheral molecules of stilbazole derivatives. The various nematic phases formed by new hydrogen bonding building blocks were investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. The first discotic complexes of PG and trans-4-alkoxy-4′-stilbazoles exhibited nematic columnar (NC) and hexagonal columnar phases depending on the length of alkyl chains, which were considered as the basic discotic structure. Several structural variations on the building blocks were attempted to examine their effects on the liquid crystalline properties of discotic complexes. The nematic lateral phase (NL) with enhanced intercolumnar order was observed for the complexes of PG and trans-4-cyanoalkoxy-4′ stilbazoles due probably to the strong dipole interactions between cyano groups at the end of alkoxy chains. By introducing the nonlinear structure in three arms of supramolecular discotic mesogen, a discotic nematic phase (ND) was observed for the complex of THPB and trans-4-octyloxy-4 -stilbazole. The single hydrogen bonding between phenol and pyridine moieties in this study provides a simple and effective method for preparing the rarely found discotic nematic liquid crystals.  相似文献   

5.
Self‐assembly of discotic molecules into supramolecular polymers offers a flexible approach for the generation of multicomponent one‐dimensional columnar architectures with tuneable biomedical properties. Decoration with ligands induces specific binding of the self‐assembled scaffold to biological targets. The modular design allows the easy co‐assembly of different discotics for the generation of probes for targeted imaging and cellular targeting with adjustable ligand density and composition.  相似文献   

6.
The amide bond is a versatile functional group and its directional hydrogen‐bonding capabilities are widely applied in, for example, supramolecular chemistry. The potential of the thioamide bond, in contrast, is virtually unexplored as a structuring moiety in hydrogen‐bonding‐based self‐assembling systems. We report herein the synthesis and characterisation of a new self‐assembling motif comprising thioamides to induce directional hydrogen bonding. N,N′,N′′‐Trialkylbenzene‐1,3,5‐tris(carbothioamide)s (thioBTAs) with either achiral or chiral side‐chains have been readily obtained by treating their amide‐based precursors with P2S5. The thioBTAs showed thermotropic liquid crystalline behaviour and a columnar mesophase was assigned. IR spectroscopy revealed that strong, three‐fold, intermolecular hydrogen‐bonding interactions stabilise the columnar structures. In apolar alkane solutions, thioBTAs self‐assemble into one‐dimensional, helical supramolecular polymers stabilised by three‐fold hydrogen bonding. Concentration‐ and temperature‐dependent self‐assembly studies performed by using a combination of UV and CD spectroscopy demonstrated a cooperative supramolecular polymerisation mechanism and a strong amplification of supramolecular chirality. The high dipole moment of the thioamide bond in combination with the anisotropic shape of the resulting cylindrical aggregate gives rise to sufficiently strong depolarised light scattering to enable depolarised dynamic light scattering (DDLS) experiments in dilute alkane solution. The rotational and translational diffusion coefficients, Dtrans and Drot, were obtained from the DDLS measurements, and the average length, L, and diameter, d, of the thioBTA aggregates were derived (L=490 nm and d=3.6 nm). These measured values are in good agreement with the value Lw=755 nm obtained from fitting the temperature‐dependent CD data by using a recently developed equilibrium model. This experimental verification validates our common practice for determining the length of BTA‐based supramolecular polymers from model fits to experimental CD data. The ability of thioamides to induce cooperative supramolecular polymerisation makes them effective and broadly applicable in supramolecular chemistry.  相似文献   

7.
The self‐assembly of triangular‐shaped oligo(phenylene ethynylenes) (OPEs), peripherally decorated with chiral and linear paraffinic chains, is investigated in bulk, onto surfaces and in solution. Whilst the X‐ray diffraction data for the chiral studied systems display a broad reflection centered at 2θ ~20° (λ=Cu), the higher crystallinity of OPE 3 , endowed with three linear decyl chains, results in a diffractrogram with a number of well‐resolved reflections that can be accurately indexed as a columnar packing arranged in 2D oblique cells. Compounds (S)‐ 1 a and (R)‐ 1 b —endowed with (S) and (R)‐3,7‐dimethyloctyloxy chains—transfer their chirality to the supramolecular structures formed upon their self‐assembly, and give rise to helical nanostructures of opposite handedness. A helicity switch is noticeable for the case of chiral (S)‐ 2 decorated with (S)‐2‐methylnonyloxy chains which forms right‐handed helices despite it possesses the same stereoconfiguration for their stereogenic carbons as (S)‐ 1 a that self‐assembles into left‐handed helices. The stability and the mechanism of the supramolecular polymerization in solution have been investigated by UV/Vis experiments in methylcyclohexane. These studies demonstrate that the larger the distance between the stereogenic carbon and the aromatic framework is, the more stable the aggregate is. Additionally, the self‐assembly mechanism is conditioned by the peripheral substituents: whereas compounds (S)‐ 1 a and (R)‐ 1 b self‐assemble in a cooperative manner with a low degree of cooperativity, the aggregation of (S)‐ 2 and 3 is well described by an isodesmic model. Therefore, the interaction between the chiral coil chains conditions the handedness of the helical pitch, the stability of the supramolecular structure and the supramolecular polymerization mechanism of the studied OPEs.  相似文献   

8.
Two series of unconventional triazine‐based dendrimers with C2 symmetry and C3 symmetry were prepared. The newly prepared C3‐symmetrical dendrimers were characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. Differential scanning calorimetry, polarizing microscopy, and powder XRD showed that the C3‐symmetrical dendrimers display columnar liquid‐crystalline phases during thermal treatment, but the C2‐symmetrical dendrimers were not observed to behave correspondingly. The molecular conformations of C3‐ and C2‐symmetrical dendrimers were obtained by computer simulation with the MM2 model of the CaChe program in the gas phase. The simulation results reasonably explain the different mesogenicities of C3‐ and C2‐symmetric dendrimers. This new strategy should be applicable to other types of unconventional dendrimers with rigid frameworks for displaying columnar liquid‐crystalline behavior.  相似文献   

9.
New symmetrical and asymmetrical triphenylene-containing discotic liquid crystals with two different peripheral alkyl chains, known as sym-TP(OC6H13)3(OR)3 and asym-TP(OC6H13)3(OR)3, were synthesized. Their thermotropic liquid crystal properties were investigated through polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses. The asyrranetdcal discogens are 2,6,11-rialkoxy-3,7,10-trihexyloxytriphenylenes, with the alkyl chain carbon numbers varying from 3-10, 12, and 14, while the symmetrical compounds are 2,6,10-trialkyloxy-3,7,11-trihexyloxytriphenylene. Two fluoroalkoxy substituted triphenylene discogens, 2,6,10-td(4,4,4-trifluorobutoxy)-3,7,11-trihexyloxytriphenylene and its asymmetrical isomer 2,6,11-tri(4,4,4-trifluorobutoxy)-3,7,10-trihexyloxytdphenylene were prepared. These two compounds show higher melting and clearing points than their alkoxy analogs, which implies that fluorophilic effect exists in the formation and stabilization of discotic columnar mesophase. The triphenylene derivatives TP(OC6H13)3(OR)3 with two different peripheral chains, symmetrically or asymmetrically attached on triphenylene cores, have lower melting points and clearing points than those of the higher symmetrical compounds TP(OR)6 with the same total chain carbon numbers. The mixed-chain-triphenylenes with longer alkoxy chains (n=9,10,12,14) show columnarmesophase at room temperature.  相似文献   

10.
A series of modular mesogenic salts based on the combination of anionic 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (F‐BODIPY) 2,6‐disulfonate dyes and trialkoxybenzyl‐functionalised imidazolium cations has been designed and synthesised. Each salt contains a rigid dianionic BODIPY core associated with two imidazolium cations functionalised by 1,2,3‐trialkoxybenzyl (alkyl=n‐C8, n‐C12 or n‐C16) units or, in one case, with imidazolium cations functionalised by a trialkylgallate (3,4,5‐trialkoxybenzoate) unit in which the 3,5‐dialkyl groups are terminated with a polymerisable acrylate entity. All these compounds were highly fluorescent in solution with quantum yields ranging from 54 to 62 %. In the solid state, the width of the emission band observed at around 650 nm is a clear signature of aggregation. With the trialkoxybenzylimidazolium cations, polarised optical microscopy (POM) and X‐ray scattering experiments showed that columnar mesophases were formed. Differential scanning calorimetry (DSC) studies confirmed the mesomorphic behaviour from room temperature to about 130 °C for salts with alkyl chains containing 8, 12 and 16 carbon atoms. The strong luminescence of the BODIPY unit was maintained in the mesophase and fluorescence measurements confirmed the presence of J aggregates in all cases. The salt containing the gallate‐functionalised imidazolium cations showed no mesomorphism but the acrylate terminal units could be used to engender photoinitiated polymerisation thereby allowing the material to be immobilised on glass plates. The polymerisation process was followed by FTIR spectroscopy and the fixed and patterned films were highly fluorescent with a solid‐state emission close to that of the complex in the solid state.  相似文献   

11.
Cooperative π–π interactions and H‐bonding are frequently exploited in supramolecular polymerization; however, close scrutiny of their mutual interplay has been largely unexplored. Herein, we compare the self‐assembly behavior of a series of C2‐ and C3‐symmetrical oligophenyleneethynylenes differing in their amide topology (N‐ or C‐centered). This subtle structural modification brings about drastic changes in their photophysical and supramolecular properties, highlighting the reciprocal impact of H‐bonding vs. preorganization on the evolution and final outcome of supramolecular systems.  相似文献   

12.
A systematic study on the structural rules that regulate the chiral supramolecular organization of oligo(phenylene ethynylene) (OPE)-based discotics is presented. This study is based on the chirooptical properties of two different series of triangular shape OPEs. The first of them is composed by OPE-based trisamides with a variable number of chiral side chains (compounds 1) that self-assemble following a cooperative mechanism. The CD experiments carried out with these desymmetrized trisamides demonstrate that only one stereogenic center is sufficient to achieve a helical organization with a preferred handedness. However, the ability to amplify the chirality decreases upon decreasing the number of stereocenters at the peripheral side chains. The second series is constituted by triangular shape OPEs with a variable number of ether and amide functional groups and constant absolute configuration of the stereogenic centers at all of the peripheral chains (compounds 2). These compounds do not self-assemble into helical aggregates as demonstrated by the corresponding CD studies. The amplification of chirality observed in the mixtures of some of the components of both series has been investigated. The combination of chiral trisamide 1d with chiral but nonhelical 2b or 2c does not produce an amplification of chirality most probably due to the mismatch between the stereogenic centers of both components. However, the combination of achiral trisamide 1a with chiral but nonhelical bisamide 2c generates, in a cooperative manner, helical structures with a preferred handedness in a process involving the transfer of helicity from 1a to 2c and the transfer of chirality from 2c to 1a. The structural features of the OPE discotics also exert a strong influence on the columnar aggregates. Thus, while achiral 1a bundles into thick filaments to form an organogel, the gelation ability of these triangular OPEs decreases upon increasing the number of stereogenic centers, being totally canceled for compounds 2 in which the amide functionalities are replaced by ether linkages. Finally, we have also registered AFM images of the helical aggregates obtained from the mixture of 1a+2c, which implies an efficient transfer of the chiral objects from solution to surfaces. The study presented herein increases the understanding of the structural rules that regulate the chiral supramolecular organization of discrete molecules in general and, more specifically, those based on π-conjugated oligomers.  相似文献   

13.
The ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C3 conformation, the C3-symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C3 supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids. In addition, calculations at different levels (DFT, PM7, and MM3) for the 1:3 host-guest complex predict the formation of large stable columnar helical aggregates stabilized by the compact packing of the interstitial acids by π–π and CH⋅⋅⋅π interactions. The acids restrict the movement of the the star-shaped triazine cores along the stacking axis causing a template effect in the self-assembly of the complex. Theoretical predictions correlate with experimental results, since the interaction with achiral or chiral 3,4,5-(4-alkoxybenzyloxy)benzoic acids gives rise to supramolecular complexes that organize in bulk hexagonal columnar mesophases stable at room temperature with intracolumnar order. The existence of supramolecular chirality in the mesophase was determined for complexes formed by acids derived from (S)-2-octanol. Chiral aggregation was also evidenced for complexes formed in dodecane.  相似文献   

14.
The arrangement of discotic hexa-peri-hexabenzocoronenes (HBCs) into columnar helical superstructures has been investigated in relation to their molecular architecture. The supramolecular structure of two hexaphenyl-substituted HBC derivatives, differing only in the chiral/achiral nature of the attached alkyl side chains, was studied by circular dichroism and temperature-dependent wide-angle X-ray diffraction on oriented filaments. A structural model in agreement with the experimental observations was developed on the basis of accompanying quantum-chemical calculations. The helical organization along the self-assembled columnar structures was induced by the steric requirements of the bulky phenyl rings near the aromatic core, i.e., by their rotation out-of-plane with respect to the aromatic core. On the other hand, a uniform handedness of the twist was generated by chiral alkyl substituents. At higher temperatures the degree of helical organization decreases due to lateral and longitudinal dynamics of the discotic molecules. Annealing at ambient conditions improved the long-range arrangement of the discs along the columnar structures. This reorganization indicated a self-healing of the plastic material which is desirable for application of discotics as active layers in electronic devices. The helical packing resulted in a considerable stability of the mesophase up to 500 degrees C, which has not been reported for a discotic so far.  相似文献   

15.
The chiral metalloporphyrin (dibenzoylmethylene‐κC)(ethanol‐κO){5,10,15,20‐tetrakis[(1S,4R,5R,8S)‐1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl]porphyrinato‐κ4N}ruthenium(II)–ethanol–dichloromethane (1/2/2), [Ru(C84H76N4)(C15H10O2)(C2H6O)]·2C2H6O·2CH2Cl2, and its enantiomorph were prepared from enantiomerically pure porphyrins. The enantiomers are potential versatile catalysts for asymmetric cyclopropanation, aziridination or epoxidation. In each compound, the rather large dibenzoylcarbene group is squeezed between four columnar 1,2,3,4,5,6,7,8‐octahydro‐1,4:5,8‐dimethanoanthracen‐9‐yl groups at the meso positions resulting in a doming deformation of the porphyrin core. The dibenzoylcarbene group has an anti conformation. The benzoyl O atoms make short van der Waals contacts (< 2.6 Å) with the methine groups of the chiral columnar substituents at the 10 and 20 positions of the porphyrin rings. A hydrogen‐bonded supramolecular chain is formed parallel to the b axis by interactions between the benzoyl O atom and the hydroxy groups of the coordinated and uncoordinated ethanol molecules.  相似文献   

16.
Connecting two discotic mesogens via a spacer not only stabilizes the columnar mesophase but also leads to the formation of glass columnar phase, and therefore improves the physical properties of discotic liquid crystals as organic semiconductor. Here, we report the synthesis of eight diacetylene-bridged triphenylene discotic liquid crystal dimers, [C18H6(OCnH2n+1)4(OMe)O2C-C8H16-C≡≡ C-]2, 3(n), (n = 4-8), [C18H6(OC6H13)5O2C-C8H16-C≡≡ C-]2, 6 and [C18H6(OC6H13)5O-(CH2)m-C≡≡ C-]2, 8(m), (m = 1, 3) by Eglinto...  相似文献   

17.
Discotic mesogens P/n‐M (n=12, 16, 18, M=2 H, Zn and Cu) bearing a porphyrin core, triazole linkages and peripheral 3,4,5‐trialkoxybenzyl units have been synthesized by a click‐chemistry approach. The thermal behavior, photophysical properties and morphologies of these compounds were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC), XRD, UV and PL, SEM and TEM. These compounds can self‐assemble into hexagonal columnar phases in their pure states and form organogels in 1,4‐dioxane with unusually flower‐like sphere morphology. The supramolecular complexes of P/18‐Zn with C70 or 4,7‐di‐4‐pydriyl‐2,1,3‐benzothadiazole can display hexagonal columnar phases too. Additionally, zinc porphyrin compounds P/n‐Zn show binding selectivity to Cu2+ among a series of cations in THF/H2O.  相似文献   

18.
The syntheses of various strapped and ‘picket‐fence’ chiral porphyrins are described, and their reactivities towards the enantioselective epoxidation of alkenes are reported. Four L ‐proline residues provide the chirality for the various meso‐substituted catalysts, which differ by either the spatial arrangement of the stereogenic centers or the nature and length of the straps. The resulting bridged structures possess four amide linkages in each strap, leading to highly rigid molecules with well‐defined geometries whereas the strapped Fe catalysts gave rise to only moderate enantioselectivities, the C2‐symmetrical ones being superior to the D2‐symmetrical compounds. The D2‐symmetrical ‘picket‐fence’ porphyrins were as selective as their strapped counterparts.  相似文献   

19.
Disymmetrically substituted oligo(phenyleneethynediyl) (OPE) derivatives were prepared from 2,5‐bis(octyloxy)‐4‐[(triisopropylsilyl)ethynyl]benzaldehyde ( 5 ) by an iterative approach using the following reaction sequence: i) Corey–Fuchs dibromoolefination, ii) treatment with an excess of lithium diisopropylamide, and iii) a metal‐catalyzed cross‐coupling reaction of the resulting terminal alkyne with 2,5‐diiodo‐1,4‐bis(octyloxy)benzene ( 3 ) (Schemes 2 and 3). Reaction of the OPE dimer 8 and trimer 13 thus obtained with N‐methylglycine and C60 in refluxing toluene gave the corresponding C60? OPE conjugates 16 and 17 , respectively (Scheme 4). On the other hand, treatment of the protected terminal alkynes 8 and 13 with Bu4N followed by reaction of the resulting 9 and 14 with 4‐iodo‐N,N‐dibutylaniline under Sonogashira conditions yielded 10 and 15 , respectively (Schemes 2 and 3). Subsequent treatment with N‐methylglycine and C60 in refluxing toluene furnished the C60? OPE derivatives 18 and 19 (Scheme 4). Compound 9 was also subjected to a Pd‐catalyzed cross‐coupling reaction with 3 to give the centrosymmetrical OPE pentamer 20 (Scheme 5). Subsequent reduction followed by reaction of the resulting diol 21 with acid 22 under esterification conditions led to bis‐malonate 23 . Oxidative coupling of terminal alkyne 14 with the Hay catalyst gave bis‐aldehyde 24 (Scheme 6). Treatment with diisobutylaluminium hydride followed by dicylcohexylcarbodiimide‐mediated esterification with acid 22 gave bis‐malonate 26 . Finally, treatment of bis‐malonates 23 and 26 with C60, I2, and 1,8‐diazabicylco[5.4.0]undec‐7‐ene (DBU) in toluene afforded the bis[cyclopropafullerenes] 27 and 28 , respectively (Scheme 7). The C60 derivatives 16 – 19, 27 , and 28 were tested as active materials in photovoltaic devices. Each C60? OPE conjugate was sandwiched between poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate)‐covered indium tin oxide and aluminium electrodes. Interestingly, the performances of the devices prepared from the N,N‐dialkylaniline‐terminated derivatives 18 and 19 are significantly improved when compared to those obtained with 16, 17, 27 , and 28 , thus showing that the efficiency of the devices can be significantly improved by increasing the donor ability of the OPE moiety.  相似文献   

20.
Two chiral (A)6B‐typed supramolecular cages were constructed from hydrogen‐bonded C6‐symmetric zinc porphyrin hexamers and chiral C3‐symmetric pyridyl hexadentates with a core of 1,3,5‐triphenylbenzene. Circular dichroism and molecular simulations revealed that the symmetry of the supramolecular cages switched from pseudo‐C3v to C3 with the rotational confinement of the biphenyl backbones at low temperatures, which generated conformationally chiral transfer and amplification. This unique phenomenon suggests a new strategy to develop smart materials with high sensitivity and excellent reversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号