首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A coupled Lagrangian interface‐tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two‐fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle‐based Lagrangian re‐initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface‐moving’ problems and two‐fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle‐level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle‐level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable‐density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. With this in view, a k-? model with wall functions has been introduced in a mixed finite volume/finite element method. The numerical method has been developed to deal with compressible flows but is also able to compute nearly incompressible flows. The physical model and the numerical method are first described, then validation results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp are presented. Comparisons are performed with experimental data and with other numerical results. These simulations show the ability of the present method to predict turbulent flows, and this method will be applied to simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more sophisticated turbulence model.  相似文献   

5.
A control volume type numerical methodology for the analysis of steady three‐dimensional rotating flows with heat transfer, in both laminar and turbulent conditions, is implemented and experimentally tested. Non‐axisymmetric momentum and heat transfer phenomena are allowed for. Turbulent transport is alternatively represented through three existing versions of the kε model that were adjusted to take into account the turbulence anisotropy promoted by rotation, streamline curvature and thermal buoyancy. Their relative performance is evaluated by comparison of calculated local and global heat balances with those obtained through measurements in a laboratory device. A modified version of the Lam and Bremhorst, low Reynolds number model is seen to give the best results. A preliminary analysis focused on the flow structure and the transfer of heat is reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
 This paper presents an efficient technique for the characterization of thermal transport properties in turbulent flows. The method is based on the temperature dependence of fluorescence, induced by laser radiation, of an organic dye. The laser-induced fluorescence technique is combined with 2D laser Doppler anemometry, in order to measure in the same sample volume simultaneously and instantaneously the temperature and velocity. The technique is demonstrated on a turbulent heated round jet: the mean and fluctuating dynamic and thermal fields are investigated, and the temperature-velocity cross-correlations are determined in order to characterize the turbulent diffusivity and the turbulent Prandtl number. Received: 30 October 1997/Accepted: 14 July 1998  相似文献   

7.
A coupled ghost fluid/two‐phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body‐fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super‐ and sub‐critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single‐phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas‐ or oil‐fired glass‐melting furnace. The incompressible Navier–Stokes equations are used to model the gas flow in the furnace. The discrete Navier–Stokes equations are solved by the SIMPLE(R) pressure‐correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR‐SIMPLE(R). The properties of these methods are investigated for a simple two‐dimensional flow. Thereafter, the efficiencies of the methods are compared for three‐dimensional flows in industrial glass‐melting furnaces. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in con-junction with heat transfer enhancement in particle-laden turbulent flows.The effects of particles on momentum and heat transfer are analyzed,and the possibility of drag reduc-tion in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed.We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow,which shows the heat transfer reduction when large inertial parti-cles with low specific heat capacity are added to the flow. However,we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved.The present results show that particles,which are active agents,interact not only with the velocity field,but also the temperature field and can cause a dissimilarity in momentum and heat transport.This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of par-ticles with different thermal properties.  相似文献   

11.
12.
A novel high‐order finite volume scheme using flux correction methods in conjunction with structured finite differences is extended to low Mach and incompressible flows on strand grids. Flux correction achieves a high order by explicitly canceling low‐order truncation error terms across finite volume faces and is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing summation‐by‐parts finite differences in the strand direction. A preconditioner is employed to extend the method to low speed and incompressible flows. We further extend the method to turbulent flows with the Spalart–Allmaras model. Laminar flow test cases indicate improvements in accuracy and convergence using the high‐order preconditioned method, while turbulent body‐of‐revolution flow results show improvements in only some cases, perhaps because of dominant errors arising from the turbulence model itself. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Lattice Boltzmann direct numerical simulations of turbulent heat transfer over and inside anisotropic porous media are performed. This study considers turbulent plane channel flows whose bottom walls are made from the porous media at the bulk Reynolds number of 2900 with isothermal and conjugate heat transfer wall conditions. Four different porous walls are considered. They are walls with only the wall-normal permeability, with the wall-normal and spanwise permeabilities, with the wall-normal and streamwise permeabilities, and with the isotropic wall-normal, spanwise and streamwise permeabilities. The porosity of the porous walls ranges from 0.6 to 0.8. Discussions on the effects of the anisotropic permeability on turbulent thermal fields are carried out by the instantaneous flow visualizations and the statistical quantities. In particular, temperature fluctuations, turbulent and dispersion heat fluxes are examined both inside and outside the porous walls. Finally, the heat transfer performance is discussed considering the effects of the anisotropic permeability.  相似文献   

14.
A finite volume method for the calculation of laminar and turbulent fluid flows inside constricted tubes and ducts is described. The selected finite volume method is based on curvilinear non-orthogonal co-ordinates (body-fitted co-ordinates) and a non-staggered grid arrangement. The grids are either generated by transfinite interpolation or an elliptic grid generator. The method is employed for calculation of laminar flows through a tube, a converging-diverging duct and different constricted tubes by both a two- and a three-dimensional computer program. In addition, turbulent flow through an axisymmetric constricted tube is calculated. Both the power law scheme and the second-order upwind scheme are used. The calculated results are compared with the experimental data and with other numerical solutions.  相似文献   

15.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Tangentially fired furnaces are vortex-combustion units and are widely used in steam generators of industrial plants. The present study provides a numerical investigation of the problem of turbulent reacting flows in a model furnace of a tangentially fired boiler. The importance of this problem is mainly due to its relation to large boiler furnaces used in thermal power plants. In the present work, calculation of the flow field, temperature and species concentration-contour maps in a tangentially-fired model furnace are provided. The safety of these furnaces requires that the burner be tripped (its fuel is cut off) if the flame is extinguished. Therefore, the present work provides an investigation of the influence of number of tripped burners on the characteristics of the flow and thermal fields. The details of the flow, thermal and combustion fields are obtained from the solution of the conservation equations of mass, momentum and energy and transport equations for scalar variables in addition to the equations of the turbulence model. Available experimental measurements were used for validating the calculation procedure. The results show that the vortex created due to pressure gradient at the furnace center only influenced by tripping at least two burners. However, the temperature distributions are significantly distorted by tripping any of the burners. Regions of very high temperature close to the furnace walls appear as a result of tripping the fuel in one or two of the burners. Calculated heat flux along the furnace walls are presented.  相似文献   

17.
This paper applies the higher‐order bounded numerical scheme Weighted Average Coefficients Ensuring Boundedness (WACEB) to simulate two‐ and three‐dimensional turbulent flows. In the scheme, a weighted average formulation is used for interpolating the variables at cell faces and the weighted average coefficients are determined from a normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of the solution. The scheme is applied to two turbulent flow problems: (1) two‐dimensional turbulent flow around a blunt plate; and (2) three‐dimensional turbulent flow inside a mildly curved U‐bend. In the present study, turbulence is evaluated by using a low‐Reynolds number version of the k–ω model. For the flow simulation, the QUICK scheme is applied to the momentum equations while either the WACEB scheme (Method 1) or the UPWIND scheme (Method 2) is used for the turbulence equations. The present study shows that the WACEB scheme has at least second‐order accuracy while ensuring boundedness of the solutions. The present numerical study for a pure convection problem shows that the ‘TVD’ slope ranges from 2 to 4. For the turbulent recirculating flow, two different mixed procedures (Method 1 and Method 2) produce a substantial difference for the mean velocities as well as for the turbulence kinetic energy. Method 1 predicts better results than Method 2 does, comparing the analytical solution and the experimental data. For the turbulent flow inside the mildly curved U‐bend, although the predictions of velocity distributions with two procedures are very close, a noticeable difference of turbulence kinetic energy is exhibited. It is noticed that the discrepancy exists between numerical results and the experimental data. The reason is the limit of the two‐equation turbulence model to such complex turbulent flows with extra strain‐rates. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A convergence acceleration method based on an additive correction multigrid–SIMPLEC (ACM‐S) algorithm with dynamic tuning of the relaxation factors is presented. In the ACM‐S method, the coarse grid velocity correction components obtained from the mass conservation (velocity potential) correction equation are included into the fine grid momentum equations before the coarse grid momentum correction equations are formed using the additive correction methodology. Therefore, the coupling between the momentum and mass conservation equations is obtained on the coarse grid, while maintaining the segregated structure of the single grid algorithm. This allows the use of the same solver (smoother) on the coarse grid. For turbulent flows with heat transfer, additional scalar equations are solved outside of the momentum–mass conservation equations loop. The convergence of the additional scalar equations is accelerated using a dynamic tuning of the relaxation factors. Both a relative error (RE) scheme and a local Reynolds/Peclet (ER/P) relaxation scheme methods are used. These methodologies are tested for laminar isothermal flows and turbulent flows with heat transfer over geometrically complex two‐ and three‐dimensional configurations. Savings up to 57% in CPU time are obtained for complex geometric domains representative of practical engineering problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
 A semi-analytic solution of the temperature development of single-phase, turbulent viscous flows inside smooth round tubes is performed. The special feature of the theoretical analysis revolves around two single universal functions of analytic form for the accurate characterization of the turbulent diffusivity of momentum and the turbulent velocity profile in the entire cross-section of a round tube. Using this valuable information that emanates from the analytic solution of the one-dimensional momentum balance equation, the two-dimensional energy balance equation was reformulated into an adjoint system of ordinary differential equations of first–order with constant coefficients. Each equation in the system of differential equations governs the axial variation of the average temperature of a finite volume of fluid of annular shape. Exploiting the linearity of the system of differential equations, an analytic solution of it was obtained via the matrix eigenvalue method with LAPACK, a library of Fortran 77 subroutines for numerical linear algebra. Reliable series have been determined for the axial variation of the two thermal quantities of importance: (a) the time-mean bulk temperature and (b) the local Nusselt number. The semi-analytic nature of the local Nusselt number distribution is advantageous because it may be viewed as an analytic-based correlation equation. Prediction of the local Nusselt numbers for turbulent air flows compare satisfactorily with the comprehensive correlation equations and the abundant experimental data that are accessible from the literature. The air flows are regulated by a wide spectrum of turbulent Reynolds numbers. Received on 4 June 2001 RID="★" ID="★" Current address Mechanical Engineering Dept. The University of Vermont Burlington, VT 05405, USA  相似文献   

20.
This paper presents a finite element solution algorithm for three‐dimensional isothermal turbulent flows for mold‐filling applications. The problems of interest present unusual challenges for both the physical modelling and the solution algorithm. High‐Reynolds number transient turbulent flows with free surfaces have to be computed on complex three‐dimensional geometries. In this work, a segregated algorithm is used to solve the Navier–Stokes, turbulence and front‐tracking equations. The streamline–upwind/Petrov–Galerkin method is used to obtain stable solutions to convection‐dominated problems. Turbulence is modelled using either a one‐equation turbulence model or the κ–ε two‐equation model with wall functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The change of dependent variables allows for a robust solution algorithm and good predictions even on coarse meshes. This is very important in the case of large three‐dimensional applications for which highly refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号