首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the problem of introducing flexibility in the schedule determination phase, for shop scheduling problems with release dates and deadlines. The flexibility is provided by generating a family of schedules, instead of a unique one. We represent a family of schedules by an ordered group assignment defining for each machine a sequence of groups where the operations within a group are totally permutable. We propose a polynomial time algorithm to evaluate the worst case completion time of operations in an ordered group assignment. We then consider the single machine problem with heads and deadlines associated to operations, as a sub-problem of the job shop problem. We propose polynomial time dynamic programming algorithms for minimizing the number of groups and for maximizing the number of characterized sequences, under specific constraints. Finally, computational experiences on job shop benchmarks, show the impact of grouping operations on the solution makespan value.  相似文献   

2.
The problem tackled in this paper deals with products of a finite number of triangular matrices in Max-Plus algebra, and more precisely with an optimization problem related to the product order. We propose a polynomial time optimization algorithm for 2×2 matrices products. We show that the problem under consideration generalizes numerous scheduling problems, like single machine problems or two-machine flow shop problems. Then, we show that for 3×3 matrices, the problem is NP-hard and we propose a branch-and-bound algorithm, lower bounds and upper bounds to solve it. We show that an important number of results in the literature can be obtained by solving the presented problem, which is a generalization of single machine problems, two- and three-machine flow shop scheduling problems. The branch-and-bound algorithm is tested in the general case and for a particular case and some computational experiments are presented and discussed.  相似文献   

3.
In this paper we address the non-pre-emptive flow shop scheduling problem for makespan minimization in a new modelling framework. A lower bound generation scheme is developed by using appropriately defined linear assignment problems and, based on this new approach, a special class of permutation flow shop problems is identified. We present a game theoretic interpretation of our modelling approach which leads to an integer programming formulation of the scheduling problem. A new branch and bound scheme is developed based on these results. The major advantage of our modelling framework and branch-and- bound approach is that it can be easily extended to address a general class of cyclic scheduling problems for production flow lines with blocking. After a discussion of this extension, we report on computational experience that indicates the very satisfactory performance of the new optimal solution procedure for cyclic scheduling problems with finite capacity buffers.  相似文献   

4.
We consider the general problem of static scheduling of a set of jobs in a network flow shop. In network flow shops, the scheduler not only has to sequence and schedule but also must concurrently determine the process routing of the jobs through the shop. In this paper, we establish the computational complexity of this new class of scheduling problem and propose a general purpose heuristic procedure. The performance of the heuristic is analyzed when makespan, cycle time and average flow time are the desired objectives.This research has been supported by the UCLA Academic Senate Grant #95.  相似文献   

5.
An Ant Colony Optimization Algorithm for Shop Scheduling Problems   总被引:3,自引:0,他引:3  
We deal with the application of ant colony optimization to group shop scheduling, which is a general shop scheduling problem that includes, among others, the open shop scheduling problem and the job shop scheduling problem as special cases. The contributions of this paper are twofold. First, we propose a neighborhood structure for this problem by extending the well-known neighborhood structure derived by Nowicki and Smutnicki for the job shop scheduling problem. Then, we develop an ant colony optimization approach, which uses a strong non-delay guidance for constructing solutions and which employs black-box local search procedures to improve the constructed solutions. We compare this algorithm to an adaptation of the tabu search by Nowicki and Smutnicki to group shop scheduling. Despite its general nature, our algorithm works particularly well when applied to open shop scheduling instances, where it improves the best known solutions for 15 of the 28 tested instances. Moreover, our algorithm is the first competitive ant colony optimization approach for job shop scheduling instances.  相似文献   

6.
This paper deals with performance evaluation and scheduling problems in m machine stochastic flow shop with unlimited buffers. The processing time of each job on each machine is a random variable exponentially distributed with a known rate. We consider permutation flow shop. The objective is to find a job schedule which minimizes the expected makespan. A classification of works about stochastic flow shop with random processing times is first given. In order to solve the performance evaluation problem, we propose a recursive algorithm based on a Markov chain to compute the expected makespan and a discrete event simulation model to evaluate the expected makespan. The recursive algorithm is a generalization of a method proposed in the literature for the two machine flow shop problem to the m machine flow shop problem with unlimited buffers. In deterministic context, heuristics (like CDS [Management Science 16 (10) (1970) B630] and Rapid Access [Management Science 23 (11) (1977) 1174]) and metaheuristics (like simulated annealing) provide good results. We propose to adapt and to test this kind of methods for the stochastic scheduling problem. Combinations between heuristics or metaheuristics and the performance evaluation models are proposed. One of the objectives of this paper is to compare the methods together. Our methods are tested on problems from the OR-Library and give good results: for the two machine problems, we obtain the optimal solution and for the m machine problems, the methods are mutually validated.  相似文献   

7.
We study the problem of minimizing the makespan in a two-stage assembly flow shop scheduling problem with uniform parallel machines. This problem is a generalization of the assembly flow shop problem with concurrent operations in the first stage and a single assembly operation in the second stage. We propose a heuristic with an absolute performance bound which becomes asymptotically optimal as the number of jobs becomes very large. We show that our results slightly improve earlier results for the simpler assembly flow shop problem (without uniform machines) and for the two-stage hybrid flow shop problem with uniform machines.  相似文献   

8.
In this paper, we develop a tabu search procedure for solving the uniform graph partitioning problem. Tabu search, an abstract heuristic search method, has been shown to have promise in solving several NP-hard problems, such as job shop and flow shop scheduling, vehicle routing, quadratic assignment, and maximum satisfiability. We compare tabu search to other heuristic procedures for graph partitioning, and demonstrate that tabu search is superior to other solution approaches for the uniform graph partitioning problem both with respect to solution quality and computational requirements.  相似文献   

9.
The multiprocessor flow shop scheduling problem is a generalization of the ordinary flow shop scheduling problem. The problem consists of both assigning operations to machines and scheduling the operations assigned to the same machine. We review the literature on local search methods for flow shop and job shop scheduling and adapt them to the multiprocessor flow shop scheduling problem. Other local search approaches we consider are variable-depth search and simulated annealing. We show that tabu search and variable-depth search with a neighborhood originated by Nowicki and Smutnicki outperform the other algorithms.  相似文献   

10.
The assignment problem is a well-known operations research model. Its various extensions have been applied to the design of distributed computer systems, job assignment in telecommunication networks, and solving diverse location, truck routing and job shop scheduling problems.This paper focuses on a dynamic generalization of the assignment problem where each task consists of a number of units to be performed by an agent or by a limited number of agents at a time. Demands for the task units are stochastic. Costs are incurred when an agent performs a task or a group of tasks and when there is a surplus or shortage of the task units with respect to their demands. We prove that this stochastic, continuous-time generalized assignment problem is strongly NP-hard, and reduce it to a number of classical, deterministic assignment problems stated at discrete time points. On this basis, a pseudo-polynomial time combinatorial algorithm is derived to approximate the solution, which converges to the global optimum as the distance between the consecutive time points decreases. Lower bound and complexity estimates for solving the problem and its special cases are found.  相似文献   

11.
针对具有退化工件的排序模型,考虑了单机排序和两台机器流水作业的工期窗口安排问题,在这一模型中,工件的加工时间是与其开工时间和退化率有关的一个线性函数。目标是找到一个最优排序和确定工期窗口的开始时间及大小以便最小化所有工件的费用函数,费用函数由四部分组成:提前、延误、工期窗口开始时间和工期窗口大小。对所研究的单机问题,详细地讨论了符合现实情况的几种类型问题,并得到了问题的最优解;对两台机器流水作业问题,给出了多项式算法。  相似文献   

12.
A bi-criteria group scheduling problem in a flow shop with sequence-dependent setup time is investigated in this paper. Manufacturing cell and flow shop are two popular scenarios in industry. Dynamic job releases and machine availabilities are assumed. The goal is to minimize the weighted sum of total weighted completion time and total weighted tardiness, which are aimed at satisfying the producer and customer goals separately. Normalized weights are assigned to both criteria to describe the trade-off between the two objectives. Two different initial solution finding mechanisms are proposed, and a tabu-search-based two-level search algorithm is deve1loped to find optimal/near-optimal solutions for the problem. A mathematical model is also developed and implemented to evaluate the optimality of the results from search algorithms for small problem instances. To further uncover the difference in performance of initial solutions and algorithms, an experimental design is performed and results are reported.  相似文献   

13.
We consider the multistage flexible flow shop scheduling problem with uniform parallel machines in each stage and the objective of minimizing makespan. We develop a general class of heuristics for this strongly NP-hard problem that extend several well-known heuristics for the corresponding embedded serial flow shop problem, and obtain absolute performance guarantees for heuristics in this class by building on similar absolute performance guarantees for the corresponding serial flow shop heuristics. Our approach is quite robust, since it can extend any heuristic for the serial flow shop problem (with an absolute performance guarantee) to a similar one for the flexible flow shop problem with uniform parallel machines.  相似文献   

14.
This paper considers a two-machine flow shop scheduling problem with deteriorating jobs in which the processing times of jobs are dependent on their starting times in the sequence. The objective is to minimize the weighted sum of makespan and total completion time. To analyse the problem, we propose a mixed integer programming model, and discuss several polynomially solvable special cases. We also present a branch-and-bound algorithm with several dominance rules, an upper bound and a lower bound. Finally, we present results of computational experiments conducted to evaluate the performance of the proposed model and the exact algorithm.  相似文献   

15.
This study investigates an optimization-based heuristic for the robotic cell problem. This problem arises in automated cells and is a complex flow shop problem with a single transportation robot and a blocking constraint. We propose an approximate decomposition algorithm. The proposed approach breaks the problem into two scheduling problems that are solved sequentially: a flow shop problem with additional constraints (blocking and transportation times) and a single machine problem with precedence constraints, time lags, and setup times. For each of these problems, we propose an exact branch-and-bound algorithm. Also, we describe a genetic algorithm that includes, as a mutation operator, a local search procedure. We report the results of a computational study that provides evidence that the proposed optimization-based approach delivers high-quality solutions and consistently outperforms the genetic algorithm. However, the genetic algorithm delivers reasonably good solutions while requiring significantly shorter CPU times.  相似文献   

16.
In this paper we consider the job shop scheduling problem under a discrete non-renewable resource constraint. We assume that jobs have arbitrary processing times and resource requirements and there is a unit supply of the resource at each time period. We develop an approximation algorithm for this problem and empirically test its effectiveness in finding the minimum makespan schedules.  相似文献   

17.
This paper deals with a general job shop scheduling problem with multiple constraints, coming from printing and boarding industry. The objective is the minimization of two criteria, the makespan and the maximum lateness, and we are interested in finding an approximation of the Pareto frontier. We propose a fast and elitist genetic algorithm based on NSGA-II for solving the problem. The initial population of this algorithm is either randomly generated or partially generated by using a tabu search algorithm, that minimizes a linear combination of the two criteria. Both the genetic and the tabu search algorithms are tested on benchmark instances from flexible job shop literature and computational results show the interest of both methods to obtain an efficient and effective resolution method.  相似文献   

18.
In this paper we consider a job shop scheduling problem with blocking (BJSS) constraints. Blocking constraints model the absence of buffers (zero buffer), whereas in the traditional job shop scheduling model buffers have infinite capacity. There are two known variants of this problem, namely the blocking job shop scheduling with swap allowed (BWS) and the one with no swap allowed (BNS). This scheduling problem is receiving an increasing interest in the recent literature, and we propose an Iterated Greedy (IG) algorithm to solve both variants of the problem. IG is a metaheuristic based on the repetition of a destruction phase, which removes part of the solution, and a construction phase, in which a new solution is obtained by applying an underlying greedy algorithm starting from the partial solution. A comparison with recent published results shows that the iterated greedy algorithm outperforms other state-of-the-art algorithms on benchmark instances. Moreover it is conceptually easy to implement and has a broad applicability to other constrained scheduling problems.  相似文献   

19.
This paper presents a fuzzy bilevel programming approach to solve the flow shop scheduling problem. The problem considered here differs from the standard form in that operators are assigned to the machines and imposing a hierarchy of two decision makers with fuzzy processing times. The shop owner considered higher level and assigns the jobs to the machines in order to minimize the flow time while the customer is the lower level and decides on a job schedule in order to minimize the makespan. In this paper, we use the concepts of tolerance membership function at each level to define a fuzzy decision model for generating optimal (satisfactory) solution for bilevel flow shop scheduling problem. A solution algorithm for solving this problem is given. Mathematics Subject Classification: 90C70, 90B36, 90C99  相似文献   

20.
In this paper problems of time-dependent scheduling on dedicated machines are considered. The processing time of each job is described by a function which is dependent on the starting time of the job. The objective is to minimise the maximum completion time (makespan). We prove that under linear deterioration the two-machine flow shop problem is strongly NP-hard and the two-machine open shop problem is ordinarily NP-hard. We show that for the three-machine flow shop and simple linear deterioration there does not exist a polynomial-time approximation algorithm with the worst case ratio bounded by a constant, unless P=NP. We also prove that the three-machine open shop problem with simple linear deterioration is ordinarily NP-hard, even if the jobs have got equal deterioration rates on the third machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号