首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years multi-channel retail systems have received increasing interest. Partly due to growing online business that serves as a second sales channel for many firms, offering channel specific prices has become a common form of revenue management. We analyze conditions for known inventory control policies to be optimal in presence of two different sales channels. We propose a single item lost sales model with a lead time of zero, periodic review and nonlinear non-stationary cost components without rationing to realistically represent a typical web-based retail scenario. We analyze three variants of the model with different arrival processes: demand not following any particular distribution, Poisson distributed demand and a batch arrival process where demand follows a Pòlya frequency type distribution. We show that without further assumptions on the arrival process, relatively strict conditions must be imposed on the penalty cost in order to achieve optimality of the base stock policy. We also show that for a Poisson arrival process with fixed ordering costs the model with two sales channels can be transformed into the well known model with a single channel where mild conditions yield optimality of an (sS) policy. Conditions for optimality of the base stock and (sS) policy for the batch arrival process with and without fixed ordering costs, respectively, are presented together with a proof that the batch arrival process provides valid upper and lower bounds for the optimal value function.  相似文献   

2.
In this paper, we assume that the demands of different customers are not identical in the lead time. Thus, we investigate a continuous review inventory model involving controllable lead time and a random number of defective goods in buyer’s arriving order lot with partial lost sales for the mixtures of distributions of the lead time demand to accommodate more practical features of the real inventory systems. Moreover, we analyze the effects of increasing investment to reduce the lost sales rate when the order quantity, reorder point, lost sales rate and lead time are treated as decision variables. In our studies, we first assume that the lead time demand follows the mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. By analyzing the total expected cost function, we develop an algorithm to obtain the optimal ordering policy and the optimal investment strategy for each case. Finally, we provide numerical examples to illustrate the results.  相似文献   

3.
This paper investigates the impact of ordering cost reduction on the modified continuous review inventory systems involving variable lead time with a mixture of backorders and lost sales. The objective is to simultaneously optimise the order quantity, ordering cost, reorder point and lead time. We first assume the lead time demand follows a normal distribution, then relax this assumption to consider the distribution free case where only the mean and variance of lead time demands are known. An algorithm procedure of finding the optimal solution is developed, and two numerical examples are given to illustrate the results.  相似文献   

4.
This paper analyzes a stochastic inventory problem with an order-time constraint that restricts the times at which a manufacturer places new orders to a supplier. This constraint stems from the limited upstream capacity in a supply chain, such as production capacity at a supplier or transportation capacity between a supplier and a manufacturer. Consideration of limited upstream capacity extends the classical inventory literature that unrealistically assumes infinite supplier/transporter capacity. But this consideration increases the complexity of the problem. We study the constraint under a Poisson demand process and allow for a fixed ordering cost. In presence of the constraint, we establish the optimality of an (s,S) policy under both the discounted and average cost objectives. Under the average cost objective, we show the uniqueness of the order-up-to level S. We numerically compare our model with the classical unconstrained model. We report significant savings in costs that can be achieved by using our model when the order time is constrained.  相似文献   

5.
In this paper, we study an integrated demand selection and multi-echelon inventory control problem that generalizes the classical deterministic single distribution centre (DC) multi-retailer model by incorporating demand selection decisions. In addition to the ordering and holding cost components, a concave operating cost of the DC and a capacity on the total market demand served are also considered. For given revenue and cost parameters, the problem is to determine which sets of demand to fulfill and which multi-echelon inventory control policy to implement so as to maximize the net profit. We show that the problem can be formulated as a nonlinear discrete optimization model. We analyse the structural properties of the model and, based on these, outline an approach to solve the model efficiently. We also present some interesting managerial insights obtained from the numerical experiments.  相似文献   

6.
As a part of supply chain management literature and practice, it has been recognized that there can be significant gains in integrating inventory and transportation decisions. The problem we tackle here is a common one both in retail and production sectors where several items have to be ordered from a single supplier. We assume that there is a finite planning horizon to make the ordering decisions for the items, and in this finite horizon the retailer or the producer knows the demand of each item in each period. In addition to the inventory holding cost, an item-base fixed cost associated with each item included in the order, and a piecewise linear transportation cost are incurred. We suggest a Lagrangean decomposition based solution procedure for the problem and carry out numerical experiments to analyze the value of integrating inventory and transportation decisions under different scenarios.  相似文献   

7.
In spite of its tremendous economic significance, the problem of sales staff schedule optimization for retail stores has received relatively scant attention. Current approaches typically attempt to minimize payroll costs by closely fitting a staffing curve derived from exogenous sales forecasts, oblivious to the ability of additional staff to (sometimes) positively impact sales. In contrast, this paper frames the retail scheduling problem in terms of operating profit maximization, explicitly recognizing the dual role of sales employees as sources of revenues as well as generators of operating costs. We introduce a flexible stochastic model of retail store sales, estimated from store-specific historical data, that can account for the impact of all known sales drivers, including the number of scheduled staff, and provide an accurate sales forecast at a high intra-day resolution. We also present solution techniques based on mixed-integer (MIP) and constraint programming (CP) to efficiently solve the complex mixed integer non-linear scheduling (MINLP) problem with a profit-maximization objective. The proposed approach allows solving full weekly schedules to optimality, or near-optimality with a very small gap. On a case-study with a medium-sized retail chain, this integrated forecasting–scheduling methodology yields significant projected net profit increases on the order of 2–3% compared to baseline schedules.  相似文献   

8.
This paper considers a two-stage supply chain in which a supplier serves a set of stores in a retail chain. We consider a two-stage Stackelberg game in which the supplier must set price discounts for each period of a finite planning horizon under uncertainty in retail-store demand. As a mechanism to stimulate sales, the supplier offers periodic off-invoice price discounts to the retail chain. Based on the price discounts offered by the supplier, and after store demand uncertainty is resolved, the retail chain determines individual store order quantities in each period. Because the supplier offers store-specific prices, the retailer may ship inventory between stores, a practice known as diverting. We demonstrate that, despite the resulting bullwhip effect and associated costs, a carefully designed price promotion scheme can improve the supplier’s profit when compared to the case of everyday low pricing (EDLP). We model this problem as a stochastic bilevel optimization problem with a bilinear objective at each level and with linear constraints. We provide an exact solution method based on a Reformulation-Linearization Technique (RLT). In addition, we compare our solution approach with a widely used heuristic and another exact solution method developed by Al-Khayyal (Eur. J. Oper. Res. 60(3):306–314, 1992) in order to benchmark its quality.  相似文献   

9.
In a centrally managed system, inventory at a retailer can be transshipped to a stocked-out retailer to meet demand. As the inventory at the former retailer may be demanded by future customers of that retailer and transshipment time/cost is non-negligible, it can be more profitable to not transship in some situations. When unsatisfied demand is backordered, reassignment of inventory to a previously backordered demand can perhaps become profitable as demand uncertainty resolves over time. Despite this intuition, we prove that no reassignments are necessary for cost optimality under periodic holding cost accounting in a two-retailer system. This remains valid for multi-retailer systems according to numerical analyses. When holding costs are accounted for only at the end of each replenishment cycle, reassignments are necessary for optimality but insignificant in reducing the total cost. In most instances tested, the decrease in total cost from reassignments is below 2% for end of cycle holding cost accounting. These results simplify transshipment policies and facilitate finding good policies in both implementation and future studies, as reassignments can be omitted from consideration in optimization models under periodic holding cost accounting and in approximation models under cyclical cost accounting.  相似文献   

10.
In this paper, we consider a serial two-echelon periodic review inventory system with two supply modes at the most upstream stock point. As control policy for this system, we propose a natural extension of the dual-index policy, which has three base-stock levels. We consider the minimization of long run average inventory holding, backlogging, and both per unit and fixed emergency ordering costs. We provide nested newsboy characterizations for two of the three base-stock levels involved and show a separability result for the difference with the remaining base-stock level. We extend results for the single-echelon system to efficiently approximate the distributions of random variables involved in the newsboy equations and find an asymptotically correct approximation for both the per unit and fixed emergency ordering costs. Based on these results, we provide an algorithm for setting base-stock levels in a computationally efficient manner. In a numerical study, we investigate the value of dual-sourcing in supply chains and illustrate that dual-sourcing can lead to significant cost savings in cases with high demand uncertainty, high backlogging cost or long lead times.  相似文献   

11.
We study a two-level inventory system that is subject to failures and repairs. The objective is to minimize the expected total cost so as to determine the production plan for a single quantity demand. The expected total cost consists of the inventory carrying costs for finished and unfinished items, the backlog cost for not meeting the demand due-date, and the planning costs associated with the ordering schedule of unfinished items. The production plan consists of the optimal number of lot sizes, the optimal size for each lot, the optimal ordering schedule for unfinished items, and the optimal due-date to be assigned to the demand. To gain insight, we solve special cases and use their results to device an efficient solution approach for the main model. The models are solved to optimality and the solution is either obtained in closed form or through very efficient algorithms.  相似文献   

12.

In this paper, an inventory problem where the inventory cycle must be an integer multiple of a known basic period is considered. Furthermore, the demand rate in each basic period is a power time-dependent function. Shortages are allowed but, taking necessities or interests of the customers into account, only a fixed proportion of the demand during the stock-out period is satisfied with the arrival of the next replenishment. The costs related to the management of the inventory system are the ordering cost, the purchasing cost, the holding cost, the backordering cost and the lost sale cost. The problem is to determine the best inventory policy that maximizes the profit per unit time, which is the difference between the income obtained from the sales of the product and the sum of the previous costs. The modeling of the inventory problem leads to an integer nonlinear mathematical programming problem. To solve this problem, a new and efficient algorithm to calculate the optimal inventory cycle and the economic order quantity is proposed. Numerical examples are presented to illustrate how the algorithm works to determine the best inventory policies. A sensitivity analysis of the optimal policy with respect to some parameters of the inventory system is developed. Finally, conclusions and suggestions for future research lines are given.

  相似文献   

13.
Item demands at individual retail stores in a chain often differ significantly, due to local economic conditions, cultural and demographic differences and variations in store format. Accounting for these variations appropriately in inventory management can significantly improve retailers’ profits. For example, it is shown that having greater differences across the mean store demands leads to a higher expected profit, for a given inventory and total mean demand. If more than one inventory shipment per season is possible, the analysis becomes dynamic by including updated demand forecasts for each store and re-optimizing store inventory policies in midseason. In this paper, we formulate a dynamic stochastic optimization model that determines the total order size and the optimal inventory allocation across nonidentical stores in each period. A generalized Bayesian inference model is used for demands that are partially correlated across the stores and time periods. We also derive a normal approximation for the excess inventory from the previous period, which allows the dynamic programming formulation to be easily solved. We analyze the tradeoffs between obtaining information and profitability, e.g., stocking more stores in period 1 provides more demand information for period 2, but does not necessarily lead to higher total profit. Numerical analyses compare the expected profits of alternative supply chain strategies, as well as the sensitivity to different distributions of demand across the stores. This leads to novel strategic insights that arise from adopting inventory policies that vary by store type.  相似文献   

14.
Zhang et al. (2011) proposed the partial backordering EOQ with correlated demand caused by cross-selling, where a portion of the sales of a minor item is associated with those of a major item. In this paper, we extend their model to make it more applicable to dealing with the inventory replenishment problem for multiple associated items. We formulate the model as a mixed integer nonlinear programming (MINLP) problem and develop a global optimum search procedure with the fill rate given. We further employ a one-dimensional search on the fill rate to obtain the minimum total inventory cost within a predetermined precision, which enjoys polynomial computational complexity.  相似文献   

15.
In this paper, we propose an optimisation model to determine the product assortment, inventory replenishment, display area and shelf space allocation decisions that jointly maximize the retailer’s profit under shelf space and backroom storage constraints. The variety of products to be displayed in the retail store, their display locations within the store, their ordering quantities, and the allocated shelf space in each display area are considered as decision variables to be determined by the proposed integrated model. In the model formulation, we include the inventory investment costs, which are proportional to the average inventory, and storage and display costs as components of the inventory costs and make a clear distinction between showroom and backroom inventories. We also consider the effect of the display area location on the item demand. The developed model is a mixed integer non-linear program that we solved using LINGO software. Numerical examples are used to illustrate the developed model.  相似文献   

16.
Estimation of retail demand is critical to decisions about procuring, shipping, and shelving. The idea of Poisson demand process is central to retail inventory management and numerous studies suggest that negative binomial (NB) distribution characterize retail demand well. In this study, we reassess the adequacy of estimating retail demand with the NB distribution. We propose two Poisson mixtures—the Poisson–Tweedie family (PTF) and the Conway–Maxwell–Poisson distribution—as generic alternatives to the NB distribution. On the basis of the principle of likelihood and information theory, we adopt out‐of‐sample likelihood as a metric for model selection. We test the procedure on consumer demand for 580 stock‐keeping unit store sales datasets. Overall the PTF and the Conway–Maxwell–Poisson distribution outperform the NB distribution for 70% of the tested samples. As a general case of the NB model, the PTF has particularly strong performance for datasets with relatively small means and high dispersion. Our finding carries useful implications for researchers and practitioners who seek for flexible alternatives to the oft‐used NB distribution in characterizing retail demand. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a Markov decision process for managing inventory systems with Markovian customer demand and Markovian product returns. Employing functional analysis, we prove the existence of the optimal replenishment policies for the discounted-cost and average-cost problems when demand, returns, and cost functions are of polynomial growth. Our model generalizes literature results by integrating Markovian demand, Markovian returns, and positive replenishment lead times. In particular, the optimality of the reorder point, order-up-to policies is proved when the order cost consists of fixed setup and proportional cost components and the inventory surplus cost is convex. We then make model extensions to include different cost components and to differentiate returned products from new ones. Finally, we derive managerial insights for running integrated closed-loop supply chains. At the aggregate level, returns reduce effective demand while many structural characteristics of inventory models are intact. A simple heuristic for managing systems with returns is to still utilize literature results without returns, but effective demand is lower than customer demand.  相似文献   

18.
This paper considers continuous-review lost-sales inventory models with no fixed order cost and a Poisson demand process. There is a holding cost per unit per unit time and a lost sales cost per unit. The objective is to minimise the long run total cost. Base stock policies are, in general, sub-optimal under lost sales. The optimal policy would have to take full account of the remaining lead times on all the orders currently outstanding and such a policy would be too complex to analyse, let alone implement. This paper considers policies which make use of the observation that, for lost sales models, base stock policies can be improved by imposing a delay between the placement of successive orders. The performance of these policies is compared with that of the corresponding base stock policy and also with the policy of ordering at fixed and regular intervals of time.  相似文献   

19.
We determine replenishment and sales decisions jointly for an inventory system with random demand, lost sales and random yield. Demands in consecutive periods are independent random variables and their distributions are known. We incorporate discretionary sales, when inventory may be set aside to satisfy future demand even if some present demand may be lost. Our objective is to minimize the total discounted cost over the problem horizon by choosing an optimal replenishment and discretionary sales policy. We obtain the structure of the optimal replenishment and discretionary sales policy and show that the optimal policy for finite horizon problem converges to that of the infinite horizon problem. Moreover, we compare the optimal policy under random yield with that under certain yield, and show that the optimal order quantity (sales quantity) under random yield is more (less) than that under certain yield.  相似文献   

20.
This paper studies a periodic review pricing and inventory replenishment problem which encounters stochastic demands in multiple periods. In many inventory control problems, the unsatisfied demand is traditionally assumed to be backlogged but in this paper is assumed to be lost. In many practical problems, a consumer who could not buy what he/she wants in one store is not willing to wait until that store restocks it but tries to buy alternatives in other stores. Also, in this paper, the random variable for the demand function is assumed to be general, which means that any probability function for the random variable can be applied to our result. Cost terms consist of the holding cost by the leftover, the shortage cost by lost sales, and the strictly positive fixed ordering cost. The objective of this paper is to dynamically and simultaneously decide the optimal selling price and replenishment in each period by maximizing the expected profit over the finite selling horizon. We show that, under the general assumption on the random variable for the demand, the objective function is KK-concave, an (s,S)(s,S) policy is optimal for the replenishment and the optimal price is determined based on the inventory level after the replenishment in each period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号