首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Until recently, network science has focused on the properties of single isolated networks that do not interact or depend on other networks. However it has now been recognized that many real-networks, such as power grids, transportation systems, and communication infrastructures interact and depend on other networks. Here, we will present a review of the framework developed in recent years for studying the vulnerability and recovery of networks composed of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes, like for example certain people, play a role in two networks, i.e. in a multiplex. Dependency relations may act recursively and can lead to cascades of failures concluding in sudden fragmentation of the system. We review the analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. The general theory and behavior of interdependent networks has many novel features that are not present in classical network theory. Interdependent networks embedded in space are significantly more vulnerable compared to non-embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences. Finally, when recovery of components is possible, global spontaneous recovery of the networks and hysteresis phenomena occur. The theory developed for this process points to an optimal repairing strategy for a network of networks. Understanding realistic effects present in networks of networks is required in order to move towards determining system vulnerability.  相似文献   

2.
This paper proposes a novel approach to get the exact optimal double-resource assignment for the robust design problem in multistate computer networks. A multistate computer network consists of links and vertices where both kinds of resources may have several states due to failure, partial failure or maintenance. Therefore, each link (vertex) in the network should be assigned sufficient capacity to keep the network functioning normally. The robust design problem (RDP) in a multistate computer network (MCN) is to search for the minimum capacity assignment of each link and vertex such that the network still survived even under both kinds of failures. However, how to optimally assign the capacity to each resource is not an easy task. This paper proposes an efficient approach to do such assignment and illustrates the efficiency of the proposed approach by some numerical examples.  相似文献   

3.
Given an undirected graph and a weighting function defined on the vertex set, the minimum weight vertex cover problem is to find a vertex subset whose total weight is minimum subject to the premise that the selected vertices cover all edges in the graph. In this paper, we introduce a meta-heuristic based upon the Ant Colony Optimization (ACO) approach, to find approximate solutions to the minimum weight vertex cover problem. In the literature, the ACO approach has been successfully applied to several well-known combinatorial optimization problems whose solutions might be in the form of paths on the associated graphs. A solution to the minimum weight vertex cover problem however needs not to constitute a path. The ACO algorithm proposed in this paper incorporates several new features so as to select vertices out of the vertex set whereas the total weight can be minimized as much as possible. Computational experiments are designed and conducted to study the performance of our proposed approach. Numerical results evince that the ACO algorithm demonstrates significant effectiveness and robustness in solving the minimum weight vertex cover problem.  相似文献   

4.
In this paper, we consider the evacuation problem in a network which consists of a directed graph with capacities and transit times on its arcs. This problem can be solved by the algorithm of Hoppe and Tardos [B. Hoppe, É. Tardos, The quickest transshipment problem, Math. Oper. Res. 25(1) (2000) 36–62] in polynomial time. However their running time is high-order polynomial, and hence is not practical in general. Thus, it is necessary to devise a faster algorithm for a tractable and practically useful subclass of this problem. In this paper, we consider a network with a sink s such that (i) for each vertex vs the sum of the transit times of arcs on any path from v to s takes the same value, and (ii) for each vertex vs the minimum v-s cut is determined by the arcs incident to s whose tails are reachable from v. This class of networks is a generalization of grid networks studied in the paper [N. Kamiyama, N. Katoh, A. Takizawa, An efficient algorithm for evacuation problem in dynamic network flows with uniform arc capacity, IEICE Trans. Infrom. Syst. E89-D (8) (2006) 2372–2379]. We propose an efficient algorithm for this network problem.  相似文献   

5.
The paper studies crown reductions for the Minimum Weighted Vertex Cover problem introduced recently in the unweighted case by Fellows et al. [Blow-Ups, Win/Win's and crown rules: some new directions in FPT, in: Proceedings of the 29th International Workshop on Graph Theoretic Concepts in Computer Science (WG’03), Lecture notes in computer science, vol. 2880, 2003, pp. 1-12, Kernelization algorithms for the vertex cover problem: theory and experiments, in: Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), New Orleans, Louisiana, January 2004, pp. 62-69]. We describe in detail a close relation of crown reductions to Nemhauser and Trotter reductions that are based on the linear programming relaxation of the problem. We introduce and study the so-called strong crown reductions, suitable for finding (or counting) all minimum vertex covers, or finding a minimum vertex cover under some additional constraints. It is described how crown decompositions and strong crown decompositions suitable for such problems can be computed in polynomial time. For weighted König-Egerváry graphs (G,w) we observe that the set of vertices belonging to all minimum vertex covers, and the set of vertices belonging to no minimum vertex covers, can be efficiently computed.Further, for some specific classes of graphs, simple algorithms for the MIN-VC problem with a constant approximation factor r<2 are provided. On the other hand, we conclude that for the regular graphs, or for the Hamiltonian connected graphs, the problem is as hard to approximate as for general graphs.It is demonstrated how the results about strong crown reductions can be used to achieve a linear size problem kernel for some related vertex cover problems.  相似文献   

6.
In this paper, we show that a minimum non-submodular cover problem can be reduced into a problem of minimum submodular cover with submodular cost. In addition, we present an application in wireless sensor networks.  相似文献   

7.
Mobile guards on the vertices of a graph are used to defend it against an infinite sequence of attacks on either its vertices or its edges. If attacks occur at vertices, this is known at the eternal domination problem. If attacks occur at edges, this is known as the eternal vertex cover problem. We focus on the model in which all guards can move to neighboring vertices in response to an attack. Motivated by the question of which graphs have equal eternal vertex cover and eternal domination numbers, a number of results are presented; one of the main results of the paper is that the eternal vertex cover number is greater than the eternal domination number (in the all-guards move model) in all graphs of minimum degree at least two.  相似文献   

8.
A pebbling move on a graph consists of taking two pebbles off of one vertex and placing one pebble on an adjacent vertex. In the traditional pebbling problem we try to reach a specified vertex of the graph by a sequence of pebbling moves. In this paper we investigate the case when every vertex of the graph must end up with at least one pebble after a series of pebbling moves. The cover pebbling number of a graph is the minimum number of pebbles such that however the pebbles are initially placed on the vertices of the graph we can eventually put a pebble on every vertex simultaneously. We find the cover pebbling numbers of trees and some other graphs. We also consider the more general problem where (possibly different) given numbers of pebbles are required for the vertices.  相似文献   

9.
Given a simple undirected graph, the minimum connected dominating set problem is to find a minimum cardinality subset of vertices D inducing a connected subgraph such that each vertex outside D has at least one neighbor in D. Approximations of minimum connected dominating sets are often used to represent a virtual routing backbone in wireless networks. This paper first proposes a constant-ratio approximation algorithm for the minimum connected dominating set problem in unit ball graphs and then introduces and studies the edge-weighted bottleneck connected dominating set problem, which seeks a minimum edge weight in the graph such that the corresponding bottleneck subgraph has a connected dominating set of size k. In wireless network applications this problem can be used to determine an optimal transmission range for a network with a predefined size of the virtual backbone. We show that the problem is hard to approximate within a factor better than 2 in graphs whose edge weights satisfy the triangle inequality and provide a 3-approximation algorithm for such graphs. We also show that for fixed k the problem is polynomially solvable in unit disk and unit ball graphs.  相似文献   

10.
The network flow interdiction problem asks to reduce the value of a maximum flow in a given network as much as possible by removing arcs and vertices of the network constrained to a fixed budget. Although the network flow interdiction problem is strongly NP-complete on general networks, pseudo-polynomial algorithms were found for planar networks with a single source and a single sink and without the possibility to remove vertices. In this work, we introduce pseudo-polynomial algorithms that overcome various restrictions of previous methods. In particular, we propose a planarity-preserving transformation that enables incorporation of vertex removals and vertex capacities in pseudo-polynomial interdiction algorithms for planar graphs. Additionally, a new approach is introduced that allows us to determine in pseudo-polynomial time the minimum interdiction budget needed to remove arcs and vertices of a given network such that the demands of the sink node cannot be completely satisfied anymore. The algorithm works on planar networks with multiple sources and sinks satisfying that the sum of the supplies at the sources equals the sum of the demands at the sinks. A simple extension of the proposed method allows us to broaden its applicability to solve network flow interdiction problems on planar networks with a single source and sink having no restrictions on the demand and supply. The proposed method can therefore solve a wider class of flow interdiction problems in pseudo-polynomial time than previous pseudo-polynomial algorithms and is the first pseudo-polynomial algorithm that can solve non-trivial planar flow interdiction problems with multiple sources and sinks. Furthermore, we show that the k-densest subgraph problem on planar graphs can be reduced to a network flow interdiction problem on a planar graph with multiple sources and sinks and polynomially bounded input numbers.  相似文献   

11.
This paper considers variations of the minimum connected vertex cover problem to be found in the study of wireless network design. A simple, theoretic formulation is followed by a discussion of practical constraints. Two algorithms are given and results compared.  相似文献   

12.
The generalized Steiner problem (GSP) is concerned with the determination of a minimum cost subnetwork of a given network where some (not necessarily all) vertices satisfy certain pairwise (vertex or edge) connectivity requirements.The GSP has applications to the design of water and electricity supply networks, communication networks and other large-scale systems where connectivity requirements ensure the communication between the selected vertices when some vertices and/or edges can become inoperational due to scheduled maintenance, error, or overload.The GSP is known to beNP-complete. In this paper we show that if the subnetwork is required to be biconnected or respectively edge-biconnected, and the underlying network is outerplanar, the GSP can be solved in linear time.  相似文献   

13.
The generalized Steiner problem (GSP) is concerned with the determination of a minimum cost subnetwork of a given network where some (not necessarily all) vertices satisfy certain pairwise (vertex or edge) connectivity requirements. The GSP has applications to the design of water and electricity supply networks, communication networks and other large-scale systems where connectivity requirements ensure the communication between the selected vertices when some vertices and/or edges can become inoperational due to scheduled maintenance, error, or overload. The GSP is known to be NP-complete. In this paper we show that if the subnetwork is required to be respectively biconnected and edge-biconnected, and the underlying network is series-parallel, both problems can be solved in linear time.  相似文献   

14.
We analyze a problem in computer network security, wherein packet filters are deployed to defend a network against spoofed denial of service attacks. Information on the Internet is transmitted by the exchange of IP packets, which must declare their origin and destination addresses. A route-based packet filter verifies whether the purported origin of a packet is correct with respect to the current route map. We examine the optimization problem of finding a minimum cardinality set of nodes to filter in the network such that no spoofed packet can reach its destination. We prove that this problem is NP-hard, and derive properties that explicitly relate the filter placement problem to the vertex cover problem. We identify topologies and routing policies for which a polynomial-time solution to the minimum filter placement problem exists, and prove that under certain routing conditions a greedy heuristic for the filter placement problem yields an optimal solution.  相似文献   

15.
The tree cover (TC) problem is to compute a minimum weight connected edge set, given a connected and edge-weighted graph G, such that its vertex set forms a vertex cover for G. Unlike related problems of vertex cover or edge dominating set, weighted TC is not yet known to be approximable in polynomial time as well as the unweighted version is. Moreover, the best approximation algorithm known so far for weighted TC is far from practical in its efficiency. In this paper we consider a restricted version of weighted TC, as a first step towards better approximation of general TC, where only two edge weights differing by at least a factor of 2 are available. It will be shown that a factor 2 approximation can be attained efficiently (in the complexity of max flow) in this case by a primal-dual method. Even under the limited weights as such, the primal-dual arguments used will be seen to be quite involved, having a nontrivial style of dual assignments as an essential part, unlike the case of uniform weights.  相似文献   

16.
Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition.  相似文献   

17.
We show that, in the graph spectrum of the normalized graph Laplacian on trees, the eigenvalue 1 and eigenvalues near 1 are strongly related to minimum vertex covers.In particular, for the eigenvalue 1, its multiplicity is related to the size of a minimum vertex cover, and zero entries of its eigenvectors correspond to vertices in minimum vertex covers; while for eigenvalues near 1, their distance to 1 can be estimated from minimum vertex covers; and for the largest eigenvalue smaller than 1, the sign graphs of its eigenvectors take vertices in a minimum vertex cover as representatives.  相似文献   

18.
This paper presents a constraint generation approach to the network reliability problem of adding spare capacity at minimum cost that allows the traffic on a failed link to be rerouted to its destination. Any number of non-simultaneous link failures can be part of the requirements on the spare capacity. The key result is a necessary and sufficient condition for a multicommodity flow to exist, which is derived in the appendix. Computational results on large numbers of random networks are presented.  相似文献   

19.
基于耦合映像格子的城市交通系统相继故障研究   总被引:1,自引:0,他引:1  
在对一个实际的城市交通系统进行复杂网络描述的基础上,构造了该城市交通系统的耦合映像格子模型,利用该模型研究了城市交通系统的相继故障问题,应用计算机仿真手段研究了干扰强度和网络相继故障的关系,网络相继故障在攻击条件下对于节点度数的敏感性以及不同攻击策略下网络相继故障的传播问题,对实际城市交通系统的规划、设计、建设和管理具有现实意义.  相似文献   

20.
Telecommunication networks are subject to link and equipment failures. Since failures cannot be entirely avoided, networks have to be designed so as to survive failure situations. In this paper, we are interested in designing low cost survivable networks. Given point-to-point traffic demands and a cost/capacity function for each link, we aim at finding the minimum cost capacities satisfying the given demands and survivability requirements. A survivability model that reroutes interrupted traffic using all the available capacities on the network is presented and studied. In the proposed model, capacity and flow assignments for each network operating state are jointly optimized. We prove the -hardness of the optimisation problem defined by dual constraints. Then, we propose a polynomial relaxation along with a fast heuristic to compute a feasible solution of the problem from its relaxed optimal solution. Our solution approaches are tested on a set of problem instances.Received: September 2002, Revised: July 2003, AMS classification: 90C05  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号