首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Distribution System Design, one minimizes total costs related to the number, locations and sizes of warehouses, and the assignment of warehouses to customers. The resulting system, while optimal in a strategic sense, may not be the best choice if operational aspects such as vehicle routing are also considered.We formulate a multicommodity, capacitated distribution planning model as anon-linear, mixed integer program. Distribution from factories to customers is two-staged via depots (warehouses) whose number and location must be chosen. Vehicle routes from depots to customers are established by considering the “fleet size and mix” problem, which also incorporates strategic decisions on fleet makeup and vehicle numbers of each type. This problem is solved as a generalized assignment problem, within an algorithm for the overall distribution/routing problem that is based on Benders decomposition. We furnish two version of our algorithm denoted Technique I and II. The latter is an enhaancement of the former and is employed at the user's discretion. Computer solution of test problems is discussed.  相似文献   

2.
The problem of simultaneously allocating customers to depots, finding the delivery routes and determining the vehicle fleet composition is addressed. A multi-level composite heuristic is proposed and two reduction tests are designed to enhance its efficiency. The proposed heuristic is tested on benchmark problems involving up to 360 customers, 2 to 9 depots and 5 different vehicle capacities. When tested on the special case, the multi-depot vehicle routing, our heuristic yields solutions almost as good as those found by the best known heuristics but using only 5 to 10% of their computing time. Encouraging results were also obtained for the case where the vehicles have different capacities.  相似文献   

3.
This paper presents a method for solving multi-depot vehicle routing problem (MDVRP). First, a virtual central depot is added to transfer MDVRP to the multi-depot vehicle routing problem with the virtual central depot (V-MDVRP), which is similar to a vehicle routing problem (VRP) with the virtual central depot as the origin. An improved ant colony optimization with coarse-grain parallel strategy, ant-weight strategy and mutation operation, is presented for the V-MDVRP. The computational results for 23 benchmark problems are reported and compared to those of other ant colony optimizations.  相似文献   

4.
In this paper, we consider a multi-depot periodic vehicle routing problem which is characterized by the presence of a homogeneous fleet of vehicles, multiple depots, multiple periods, and two types of constraints that are often found in reality, i.e., vehicle capacity and route duration constraints. The objective is to minimize total travel costs. To tackle the problem, we propose an efficient path relinking algorithm whose exploration and exploitation strategies enable the algorithm to address the problem in two different settings: (1) As a stand-alone algorithm, and (2) As a part of a co-operative search algorithm called integrative co-operative search. The performance of the proposed path relinking algorithm is evaluated, in each of the above ways, based on standard benchmark instances. The computational results show that the developed PRA performs well, in both solution quality and computational efficiency.  相似文献   

5.
In the multi-depot vehicle routing problem (MDVRP), there are several depots where vehicles can start and end their routes. The objective is to minimize the total distance travelled by all vehicles across all depots. The min-max multi-depot vehicle routing problem (Min-Max MDVRP) is a variant of the standard MDVRP. The primary objective is to minimize the length of the longest route. We develop a heuristic (denoted by MD) for the Min-Max MDVRP that has three stages: (1) simplify the multi-depot problem into a single depot problem and solve the simplified problem; (2) improve the maximal route; (3) improve all routes by exchanging customers between routes. MD is compared with two alternative heuristics that we also develop and an existing method from the literature on a set of 20 test instances. MD produces 15 best solutions and is the top performer. Additional computational experiments on instances with uniform and non-uniform distributions of customers and varying customer-to-vehicle ratios and with real-world data further demonstrate MD’s effectiveness in producing high-quality results.  相似文献   

6.
The vehicle fleet mix problem is a special case of the vehicle routing problem where customers are served by a heterogeneous fleet of vehicles with various capacities. An efficient heuristic for determining the composition of a vehicle fleet and travelling routes was developed using tabu search and by solving set partitioning problems. Two kinds of problems have appeared in the literature, concerning fixed cost and variable cost, and these were tested for evaluation. Initial solutions were found using the modified sweeping method. Whenever a new solution in an iteration of the tabu search was obtained, optimal vehicle allocation was performed for the set of routes, which are constructed from the current solution by making a giant tour. Experiments were performed for the benchmark problems that appeared in the literature and new best-known solutions were found.  相似文献   

7.
This paper presents a unified tabu search heuristic for the vehicle routing problem with time windows and for two important generalizations: the periodic and the multi-depot vehicle routing problems with time windows. The major benefits of the approach are its speed, simplicity and flexibility. The performance of the heuristic is assessed by comparing it to alternative methods on benchmark instances of the vehicle routing problem with time windows. Computational experiments are also reported on new randomly generated instances for each of the two generalizations.  相似文献   

8.
This paper considers the design and analysis of algorithms for the multi-depot vehicle routing problem with time windows (MDVRPTW). Given the intrinsic difficulty of this problem class, approximation methods of the type ‘cluster first, route second’ (two-step approaches) seem to offer the most promise for practical size problems. After describing six heuristics for the cluster part (assignment of customers to depots) an initial computational study of their performance is conducted. Finding, as expected, that the heuristics with the best results (in terms of the routing results) are those with the largest computational efforts.  相似文献   

9.
This work proposes a scatter search (SS) approach to solve the fleet size and mix vehicle routing problem with time windows (FSMVRPTW). In the FSMVRPTW the customers need to be serviced in their time windows at minimal costs by a heterogeneous fleet. Computational results on 168 benchmark problems are reported. Computational testing revealed that our algorithm presented better results compared to other methods published in the literature.  相似文献   

10.
The vehicle scheduling problem, arising in public transport bus companies, addresses the task of assigning buses to cover a given set of timetabled trips with consideration of practical requirements, such as multiple depots and vehicle types as well as depot capacities. An optimal schedule is characterized by minimal fleet size and minimal operational costs including costs for unloaded trips and waiting time. This paper discusses the multi-depot, multi-vehicle-type bus scheduling problem (MDVSP), involving multiple depots for vehicles and different vehicle types for timetabled trips. We use time–space-based instead of connection-based networks for MDVSP modeling. This leads to a crucial size reduction of the corresponding mathematical models compared to well-known connection-based network flow or set partitioning models. The proposed modeling approach enables us to solve real-world problem instances with thousands of scheduled trips by direct application of standard optimization software. To our knowledge, the largest problems that we solved to optimality could not be solved by any existing exact approach. The presented research results have been developed in co-operation with the provider of transportation planning software PTV AG. A software component to support planners in public transport was designed and implemented in context of this co-operation as well.  相似文献   

11.
This article addresses an extension of the multi-depot vehicle routing problem in which vehicles may be replenished at intermediate depots along their route. It proposes a heuristic combining the adaptative memory principle, a tabu search method for the solution of subproblems, and integer programming. Tests are conducted on randomly generated instances.  相似文献   

12.
This paper considers a real world waste collection problem in which glass, metal, plastics, or paper is brought to certain waste collection points by the citizens of a certain region. The collection of this waste from the collection points is therefore a node routing problem. The waste is delivered to special sites, so called intermediate facilities (IF), that are typically not identical with the vehicle depot. Since most waste collection points need not be visited every day, a planning period of several days has to be considered. In this context three related planning problems are considered. First, the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is considered and an exact problem formulation is proposed. A set of benchmark instances is developed and an efficient hybrid solution method based on variable neighborhood search and dynamic programming is presented. Second, in a real world application the PVRP-IF is modified by permitting the return of partly loaded vehicles to the depots and by considering capacity limits at the IF. An average improvement of 25% in the routing cost is obtained compared to the current solution. Finally, a different but related problem, the so called multi-depot vehicle routing problem with inter-depot routes (MDVRPI) is considered. In this problem class just a single day is considered and the depots can act as an intermediate facility only at the end of a tour. For this problem several instances and benchmark solutions are available. It is shown that the algorithm outperforms all previously published metaheuristics for this problem class and finds the best solutions for all available benchmark instances.  相似文献   

13.
In this article, a visual interactive approach based on a new greedy randomised adaptive memory programming search (GRAMPS) algorithm is proposed to solve the heterogeneous fixed fleet vehicle routing problem (HFFVRP) and a new extension of the HFFVRP, which is called heterogeneous fixed fleet vehicle routing problem with backhauls (HFFVRPB). This problem involves two different sets of customers. Backhaul customers are pickup points and linehaul customers are delivery points that are to be serviced from a single depot by a heterogeneous fixed fleet of vehicles, each of which is restricted in the capacity it can carry, with different variable travelling costs.  相似文献   

14.
We consider a cement delivery problem with an heterogeneous fleet of vehicles and several depots. The demands of the customers are typically larger than the capacity of the vehicles which means that most customers are visited several times. This is a split delivery vehicle routing problem with additional constraints. We first propose a two phase solution method that assigns deliveries to the vehicles, and then builds vehicle routes. Both subproblems are formulated as integer linear programming problems. We then show how to combine the two phases in a single integer linear program. Experiments on real life instances are performed to compare the performance of the two solution methods.  相似文献   

15.
This note introduces a refinement to a previously proposed tabu search algorithm for vehicle routing problems with time windows. This refinement yields new best known solutions on a set of benchmark instances of the multi-depot, the periodic and the site-dependent vehicle routing problems with time windows.  相似文献   

16.
This paper presents an efficient hybrid metaheuristic solution for multi-depot vehicle routing with time windows (MD-VRPTW). MD-VRPTW involves the routing of a set of vehicles with limited capacity from a set of depots to a set of geographically dispersed customers with known demands and predefined time windows. The present work aims at using a hybrid metaheuristic algorithm in the class of High-Level Relay Hybrid (HRH) which works in three levels and uses an efficient genetic algorithm as the main optimization algorithm and tabu search as an improvement method. In the genetic algorithm various heuristics incorporate local exploitation in the evolutionary search. An operator deletion- retrieval strategy is executed which shows the efficiency of the inner working of the proposed method. The proposed algorithm is applied to solve the problems of the standard Cordeau??s Instances. Results show that proposed approach is quite effective, as it provides solutions that are competitive with the best known in the literature.  相似文献   

17.
This paper presents a solution methodology for the heterogeneous fleet vehicle routing problem with time windows. The objective is to minimize the total distribution costs, or similarly to determine the optimal fleet size and mix that minimizes both the total distance travelled by vehicles and the fixed vehicle costs, such that all problem’s constraints are satisfied. The problem is solved using a two-phase solution framework based upon a hybridized Tabu Search, within a new Reactive Variable Neighborhood Search metaheuristic algorithm. Computational experiments on benchmark data sets yield high quality solutions, illustrating the effectiveness of the approach and its applicability to realistic routing problems. This work is supported by the General Secretariat for Research and Technology of the Hellenic Ministry of Development under contract GSRT NM-67.  相似文献   

18.
The Mix Fleet Vehicle Routing Problem (MFVRP) involves the design of a set of minimum cost routes, originating and terminating at a central depot, for a fleet of heterogeneous vehicles with various capacities, fixed costs and variable costs to service a set of customers with known demands. This paper develops new variants of a tabu search meta-heuristic for the MFVRP. These variants use a mix of different components, including reactive tabu search concepts; variable neighbourhoods, special data memory structures and hashing functions. The reactive concept is used in a new way to trigger the switch between simple moves for intensification and more complex ones for diversification of the search strategies. The special data structures are newly introduced to efficiently search the various neighbourhood spaces. The combination of data structures and strategic balance between intensification and diversification generates an efficient and robust implementation, which is very competitive with other algorithms in the literature on a set of benchmark instances for which some new best-known solutions are provided.  相似文献   

19.
This paper presents a new sweep-based heuristic for the fleet size and mix vehicle routing problem. This problem involves two kinds of decisions: the selection of a mix of vehicles among the available vehicle types and the routing of the selected fleet. The proposed algorithm first generates a large number of routes that are serviced by one or two vehicles. The selection of routes and vehicles to be used is then made by solving to optimality, in polynomial time, a set-partitioning problem having a special structure. Results on a set of benchmark test problems show that the proposed heuristic produces excellent solutions in short computing times. Having a fast but good solution method is needed for transportation companies that rent a significant part of their fleet and consequently can take advantage of frequent changes in fleet composition. Finally, the proposed heuristic produced new best-known solutions for three of the test problems; these solutions are reported.  相似文献   

20.
We present an analytical upper bound on the number of required vehicles for vehicle routing problems with split deliveries and any number of capacitated depots. We show that a fleet size greater than the proposed bound is not achievable based on a set of common assumptions. This property of the upper bound is proved through a dynamic programming approach. We also discuss the validity of the bound for a wide variety of routing problems with or without split deliveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号