首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
模式识别在食品质量控制方面的应用进展   总被引:1,自引:0,他引:1  
本文介绍了食品质量研究中常用的一些化学模式识别方法的基本原理,并介绍了模式识别结合红外、原子吸收、原子发射、气相色谱、液相色谱、质谱、电子鼻传感器等检测技术在食品质量控制中的应用.对化学计量学在食品质量控制中的应用前景作了展望.  相似文献   

2.
郭永明 《化学教育》2020,41(16):29-33
以高校创新型人才培养为目标,设计了一个研究型综合化学实验。以柠檬酸和尿素为原料,通过水热法制备了发射强烈蓝色荧光的碳量子点,表征了其紫外-可见吸收光谱和荧光光谱,进一步研究了该碳量子点在叶酸的检测中的应用。本实验涉及纳米材料制备、表征及应用相关知识,适合作为高年级本科生的研究型综合化学实验,有助于激发学生的研究兴趣和培养学生的科研思维。  相似文献   

3.
1995年,人们曾预言"量子控制多体动力学将成为化学物理的主流"(引自第20届Solvay化学会议上Stuart A.Rice的主旨演说.Solvay会议是研讨未来科学的高级会议.这一届会议的主题是"光化学: 化学反应及其飞秒尺度上的控制"). 现在, 我们看到了这股潮流正源源而来,每年都不断地在Nature、 Science等杂志上刻下了里程碑.  相似文献   

4.
韩克利 《物理化学学报》2004,20(Z1):1032-1036
综述了非绝热化学过程的研究,着重介绍了含时波包非绝热量子动力学方法,以及在化学反应中的非绝热动力学、光解非绝热动力学及非绝热传能过程的应用.  相似文献   

5.
荧光量子点(又称为半导体纳米晶体)是一种新兴的无机发光材料, 由于其具有独特的结构和光电性能, 在发光二极管、太阳能电池及生命科学等领域有广泛的应用. 目前, 有机相合成法和水相合成法已被成功地用于荧光量子点的合成. 与有机相合成法相比, 水相合成量子点方法简单、绿色且廉价, 合成的量子点水溶性好, 在生物医学等领域具有很好的应用前景. 本文主要介绍荧光量子点的水相合成方法及其在化学和生物分析中的应用, 并对其发展趋势进行了展望.  相似文献   

6.
随着纳米技术的进步,纳米颗粒正在被逐步应用到法庭科学领域的手印检验之中。近年来,半导体量子点因其良好的荧光特性而备受国内外法庭科学家的推崇,但大多数半导体量子点具有毒性,且会对环境造成污染,这些问题制约了半导体量子点在法庭科学领域中的应用。与传统有机染料和金属内核的半导体量子点相比,碳量子点具有毒性低、污染小、生物相容性优异的特点,现已应用于医学、生物、化学等多个领域。本文综述了半导体量子点在手印显现中的应用,介绍了碳量子点的研究进展,并指出碳量子点显现手印是今后法庭科学领域的重要研究方向。  相似文献   

7.
金松寿教授是著名的量子化学及化学动力学专家。年近九旬的他如今仍然锲而不舍地在学习、研究,把握化学研究的发展方向。他在催化集团结构适应性及无机化合物溶解度领域做了大量的工作,重要的成就是发现了选择性分子间力并用以阐释物性如溶解度、吸附、色谱中的反常现象,还可以解释溶媒对反应速度的影响。相似的选择力后来被外国科学家在超分子研究中得到证实和发展。他还推动了控制论化学的应用,对化学中的许多疑难繁琐的现象给出清晰满意的解释。  相似文献   

8.
唐睿康 《化学进展》2009,21(6):1080-1084
金松寿教授是著名的量子化学及化学动力学专家。年近九旬的他如今仍然锲而不舍地在学习、研究,把握化学研究的发展方向。他在催化集团结构适应性及无机化合物溶解度领域做了大量的工作,重要的成就是发现了选择性分子间力并用以阐释物性如溶解度、吸附、色谱中的反常现象,还可以解释溶媒对反应速度的影响。相似的选择力后来被外国科学家在超分子研究中得到证实和发展。他还推动了控制论化学的应用,对化学中的许多疑难繁琐的现象给出清晰满意的解释。  相似文献   

9.
色谱技术在中药有效成分辨识中的应用进展   总被引:2,自引:0,他引:2  
中药效应成分辨识是中药质量控制研究的关键,本文从化学特性、生物靶标和整体作用三个层面综述了2000年以来色谱技术在中药效应成分辨识研究中的应用进展,并提出未来发展方向.  相似文献   

10.
分子印迹聚合物由于可特异性地从样品溶液中富集目标物,已被广泛应用于粮食、果蔬等食品以及水、土壤等环境中农药的提取和检测.将分子印迹技术和量子点修饰技术相结合形成的分子印迹荧光探针,可以实现对目标物的高灵敏快速检测.据此,对分子印迹技术的原理、制备方法及应用进行了概述,并进一步阐述了量子点修饰的分子印迹荧光探针在农药检测中的应用和展望.  相似文献   

11.
The paper surveys how chemistry has developed over the past two centuries starting from Lavoisier’s classification of the chemical elements at the end of the eighteenth century; the subsequent development of the atomic–molecular model of matter preoccupied chemists throughout the nineteenth century, while the results of the application of quantum theory to the molecular model has been the story of this century. Whereas physical chemistry originated in the nineteenth century with the measurement of the physical properties of groups of chemical compounds that chemists identified as families, the goal of chemical physics is the explanation of the facts of chemistry in terms of the principles and theories of physics. Chemical physics as such was only possible after the discovery of the quantum theory in the 1920’s. By then the first of the sub‐atomic particles had been discovered and seemingly it is no longer possible to discuss chemical facts purely in terms of atoms and molecules – one has to recognize the electron and the nucleus, the parts of atoms. The combination of classical molecular structure with the quantum properties of the electron has given us a tremendously successful account of chemistry called ‘quantum chemistry’. Yet from the perspective of the quantum theory the deepest part of chemistry, the existence of chemical isomers and the very idea of molecular structure that rationalizes it, remains a central problem for chemical physics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies—especially linear and sublinear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about 200 (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than 200 atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear‐scaling techniques. In fact, ideas such as haptic quantum chemistry (HQC) or interactive quantum chemistry require an immediate provision of quantum chemical information which demands the calculation of data in “real time.” In this perspective, we aim at a definition of real‐time quantum chemistry, explore its realm and eventually discuss applications in the field of HQC. For the latter, we elaborate whether a direct approach is possible by virtue of real‐time quantum chemistry. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Projected Hartree-Fock (PHF) theory has a long history in quantum chemistry. PHF is here understood as the variational determination of an N-electron broken symmetry Slater determinant that minimizes the energy of a projected state with the correct quantum numbers. The method was actively pursued for several decades but seems to have been abandoned. We here derive and implement a "variation after projection" PHF theory using techniques different from those previously employed in quantum chemistry. Our PHF methodology has modest mean-field computational cost, yields relatively simple expressions, can be applied to both collinear and non-collinear spin cases, and can be used in conjunction with deliberate symmetry breaking and restoration of other molecular symmetries like complex conjugation and point group. We present several benchmark applications to dissociation curves and singlet-triplet energy splittings, showing that the resulting PHF wavefunctions are of high quality multireference character. We also provide numerical evidence that in the thermodynamic limit, the energy in PHF is not lower than that of broken-symmetry HF, a simple consequence of the lack of size consistency and extensivity of PHF.  相似文献   

15.
In the past decades, combustion chemistry research grew rapidly due to the development of combustion diagnostic methods,quantum chemistry methods, kinetic theory, and computational techniques. A lot of kinetic models have been developed for fuels from hydrogen to transportation fuel surrogates. Besides, multi-scale research method has been widely adopted to develop comprehensive models, which are expected to cover combustion conditions in real combustion devices. However, critical gaps still remain between the laboratory research and real engine application due to the insufficient research work on high pressure and low temperature combustion chemistry. Besides, there is also a great need of predictive pollutant formation model. Further development of combustion chemistry research depends on a closer interaction of combustion diagnostics, theoretical calculation and kinetic model development. This paper summarizes the recent progress in combustion chemistry research briefly and outlines the challenges and perspectives.  相似文献   

16.
密度矩阵重正化群(DMRG)作为低维强关联体系中电子结构计算的强有力方法被广泛熟知, 并被迅速地应用于量子化学, 不仅在电子结构计算中发挥重要作用, 同时也在近几年迅速地成为复杂体系量子动力学计算的重要方法. 在DMRG框架中, 衍生出了一系列计算动态响应性质的有效方法, 并得到了广泛应用. 本文简述了DMRG的基本理论, 其矩阵乘积态(MPS)表示有效地扩展了该方法的应用范围. 重点介绍了基于线性响应理论的动态DMRG, 在频率空间求解系统在零温以及有限温度下响应性质的算法, 并介绍其在电子关联问题和电子-声子关联问题中的应用, 最后展望了该领域的未来发展方向.  相似文献   

17.
The goal of xenobiology is to design biological systems endowed with unusual biochemical functions, whereas enzymology concerns the study of enzymes, the workhorses of biocatalysis. Biocatalysis employs enzymes and organisms to perform useful biotransformations in synthetic chemistry and biotechnology. During the past few years, the effects of incorporating noncanonical amino acids (ncAAs) into enzymes with potential applications in biocatalysis have been increasingly investigated. In this Review, we provide an overview of the effects of new chemical functionalities that have been introduced into proteins to improve various facets of enzymatic catalysis. We also discuss future research avenues that will complement unnatural mutagenesis with standard protein engineering to produce novel and versatile biocatalysts with applications in synthetic organic chemistry and biotechnology.  相似文献   

18.
《Chemphyschem》2003,4(5):418-438
Active control of chemical reactions on a microscopic (molecular) level, that is, the selective breaking or making of chemical bonds, is an old dream. However, conventional control agents used in chemical synthesis are macroscopic variables such as temperature, pressure or concentration, which gives no direct access to the quantum‐mechanical reaction pathway. In quantum control, by contrast, molecular dynamics are guided with specifically designed light fields. Thus it is possible to efficiently and selectively reach user‐defined reaction channels. In the last years, experimental techniques were developed by which many breakthroughs in this field were achieved. Femtosecond laser pulses are manipulated in so‐called pulse shapers to generate electric field profiles which are specifically adapted to a given quantum system and control objective. The search for optimal fields is guided by an automated learning loop, which employs direct feedback from experimental output. Thereby quantum control over gas‐phase as well as liquid‐phase femtochemical processes has become possible. In this review, we first discuss the theoretical and experimental background for many of the recent experiments treated in the literature. Examples from our own research are then used to illustrate several fundamental and practical aspects in gas‐phase as well as liquid‐phase quantum control. Some additional technological applications and developments are also described, such as the automated optimization of the output from commercial femtosecond laser systems, or the control over the polarization state of light on an ultrashort timescale. The increasing number of successful implementations of adaptive learning techniques points at the great versatility of computer‐guided optimization methods. The general approach to active control of light–matter interaction has also applications in many other areas of modern physics and related disciplines.  相似文献   

19.
密度矩阵重正化群(DMRG)作为计算低维强关联体系强有力的方法为人熟知, 在量子化学电子结构计算中得到广泛应用. 最近几年, 含时密度矩阵重正化群(TD-DMRG)的理论取得较快发展, TD-DMRG逐渐成为复杂体系量子动力学理论模拟的重要新兴方法之一. 本文综述了基于矩阵乘积态(MPS) 和矩阵乘积算符(MPO)的DMRG基本理论, 并重点介绍了若干最常见的TD-DMRG时间演化算法, 包括基于演化再压缩(P&C) 的算法、 基于含时变分原理(TDVP)的算法和时间步瞄准(TST)算法; 还对利用TD-DMRG模拟有限温体系的纯化(Purification)算法和最小纠缠典型量子热态(METTS)算法进行了介绍. 最后, 对近年TD-DMRG在复杂体系量子动力学中的应用进行了总结.  相似文献   

20.
张伟伟  钟欣欣  司玉冰  赵仪 《化学进展》2012,24(6):1166-1174
随着电子转移理论在化学、材料科学、生物医学等领域的广泛应用,人们针对不同体系提出了多种电子转移理论模型。本文主要总结了近年来我们在non-Condon电子转移理论以及含时波包方法等方面的相关工作。首先阐述包含non-Condon效应的电子转移速率理论并用于二噻吩四硫富瓦烯有机半导体迁移率的计算。而后介绍了包含量子相干效应的含时波包方法,并初步用于研究二聚芴分子三三态能量转移过程。另外,本文还阐述了如何采用量子化学计算获得电子转移速率的结构参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号