首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the bismuth(III) complex with N-ethylthiourea (Ettu) has been determined for the first time. We found that the crystal structure of [Bi(Ettu)4(ClO4)2]ClO4 is built of distorted octahedral cations [Bi(Ettu–S)4(ClO4)2]ClO4]+ and anions ClO4-. The deviation of one of the two independent Ettu molecules from the plane structure is explained by the mutual repulsion of the ligands and the formation features of hydrogen bonds. The C2H5(Ettu) group is in the cis position relative to the thiocarbonyl group.  相似文献   

2.
The dinuclear gold(III) complex, [Au2(HL)(L)2](ClO4)3(OH) (I) (HL = 1,3-diaminopropane), with two amide bridges has been synthesized for the first time. According to the X-ray diffraction data, the crystal structure of complex I consists of the complex cations [Au2(HL)(L)2]4+ and anions ClO4 and OH. The coordination sites AuN4 are insignificantly distorted squares. In the four-membered ring Au2N2, the gold atoms are bound by the bridging nitrogen atoms of the deprotonated primary amine.  相似文献   

3.
The structure, spectroscopic, and electrochemical properties of [Co{(BA)2pn}(L)2]ClO4 complexes, where (BA)2pn = N,N′-bis(benzoylacetone)-1,3-propylenediimine dianion and the two ancillary ligands (L) are pyridine, py (1), and 4-methylpyridine, 4-Mepy (2), have been investigated. These complexes have been characterized by elemental analyses, IR, UV–Vis and 1H-NMR spectroscopy. The crystal structure of [Co{(BA)2pn}(py)2]ClO4 (1) has been determined by X-ray diffraction. The coordination geometry around cobalt(III) is best described as a distorted octahedron. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial N(py)–cobalt bonds. This process becomes quasi-reversible upon the addition of excess py ligands. The second reduction step of CoII/I shows reversible behavior and is not influenced by the nature of the axial ligands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The two complexes, [RE(Gly)4(Im)(H2O)](ClO4)3(s)(RE = Eu, Sm), have been synthesized and characterized. The standard molar enthalpies of reaction for the following reactions, RECl3·6H2O(s)+4Gly(s)+Im(s)+3NaClO4(s) = =[RE(Gly)4(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l), were determined by solution-reaction colorimetry. The standard molar enthalpies of formation of the two complexes at T = 298.15 K were derived as Δf H mΘ {Eu(Gly)4(Im)(H2O)}(ClO4)3(s)} = = −(3396.6±2.3) kJ mol−1 and Δf H mΘ {Sm(Gly)4(Im)(H2O)}(ClO4)3(s)} = −(3472.7±2.3) kJ mol−1, respectively.  相似文献   

5.
The mononuclear arene complexes [Cb*Co(arene)]+ (3a–g; Cb* = C4Me4; arene is biphenyl (a), diphenylmethane (b), 1,2-diphenylethane (c), diphenyl ether (d), p-terphenyl (e), 1,2-dimesitylethane (f), or 1,3-dimesitylpropane (g)) were synthesized by the reactions of arenes either with the benzene complex [Cb*Co(C6H6)]+ (1) under visible light irradiation or with the acetonitrile derivative [Cb*Co(MeCN)3]+ (2) in refluxing THF. The reactions of 2 with 1,2-diphenyle-thane, 1,3-dimesitylpropane, and p-terphenyl in a ratio of 2: 1 afforded the dinuclear complexes [Cb*Co(μ-η:η-arene)CoCb*]2+ (4c,e,g). The stability of the dinuclear arene complexes was estimated by DFT calculations. The structures of the complexes [3a]PF6 and [3e]PF6 ere established by X-ray diffraction. For Part 6, see Ref. 1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 535–539, March, 2008.  相似文献   

6.
Two mercury(II) cyanide complexes of N-ethylthiourea (Ettu) and N-propylthiourea (Prtu) ligands, [Hg(Ettu)2(CN)2] (1) and [Hg(Prtu)2(CN)2] (2), were prepared and their crystal structures were determined by X-ray crystallography. In both structures, the mercury atom is coordinated to two sulfur atoms of thioureas and two cyanide carbon atoms in a pseudo-tetrahedral mode with the bond angles in the range of 90.52(11)–162.2(3)°. The structures are stabilized by N-H—S, N-H—N, and C-H—N intramolecular and intermolecular hydrogen bonds.  相似文献   

7.
The reaction of a sulfur and oxygen-bridged 8-quinolinolato trinuclear molybdenum cluster [Mo3OS3(qn)3(H2O)3]+ (3; Hqn = 8-quinolinol) with equimolar amounts of acetylene carboxylic acid, 4-pentynoic acid, 5-hexynoic acid, acetic acid, and pimelic acid gave clusters having μ-carboxylato groups, [Mo3OS3(qn)3(H2O)(μ-HC≡CCOO)] (6), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)2COO)] (7), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)3COO)] (8), [Mo3OS3(qn)3(H2O)(μ-CH3COO)] (4), and [{Mo3OS3(qn)3(C2H5OH)}2(μ-C7H10O4)] (5), respectively. X-ray structural analyses, 1H NMR, and electronic spectra of these clusters made clear that each of the COO groups of the reagents bridges two Mo atoms in each cluster and that no adduct formation occurred at the sulfurs in the clusters. The reaction of 3 with a large excess-molar amount (50 times) of acetylene carboxylic acid gave [Mo3OS(μ3-SCH=C(COOH)S)(qn)3(H2O)(μ-HC≡CCOO)] (9) with two molecules of acetylene carboxylic acid, one acting as a carboxylato bridge and the other in adduct formation, as supported by the electronic and 1H NMR spectra. The corresponding aqua cluster [Mo3OS3(H2O)9]4+ (1), on the contrary, reacts with acetylene carboxylic acid to give adduct [Mo3OS(μ3-SCH=C(COOH)S)(H2O)9]4+ (2). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The reaction of [Cp*2RuBr]+Br with bromine in CH2Cl2 (CD2Cl2) in an inert atmosphere at room temperature produces the complexes [Cp*Ru(Br)C5Me4CH2Br]+Br3 (syn conformer), [Cp*Ru(Br)C5Me3(CH2Br)2]+ (syn and anti conformers), and [Ru(Br)(C5Me4CH2Br)2]+ (syn conformer). All complexes were characterized by 1H and 13C NMR spectroscopy; the former complex, by elemental analysis. These complexes were also prepared by the reaction of [Cp*RuC5Me4CH2]+BF4 with bromine in CH2Cl2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2712–2718, December, 2005.  相似文献   

9.
Mono- and dianionic oxocarboxylate Ru-Mn12 clusters, [RuNO(en)2Cl]-[Mn12O12(O2CR)16(H2O)4]2 (R = Ph (1)), [RuNO(en)2Cl][Mn12O12(O2CR)16(H2O)4] (R = C6F5 (2), CH2Cl (3), R = CHCl2 (4)), and [RuNO(NH3)4OH][Mn12O12(O2CR)16(H2O)4] (R = CH2Cl (5), CHCl2 (6)) containing photochromic mononitrosyl ruthenium complexes as cations were synthesized. The magnetic properties of the complexes in static and alternating magnetic fields were studied, and compounds 16 were found to be molecular nanomagnets. By IR spectroscopy, they were shown to exhibit also photochromic properties.  相似文献   

10.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

11.
Using the ligands N‐methylimidazole ( MeIm ), N‐ethylimidazole ( EtIm ), N‐propylimidazole ( PrIm ), and 1‐methyl‐1H‐1, 2, 4‐triazole ( MeTz ) three series with a total of 13 iron(II) complexes were isolated. The series comprise of the following complexes: (a) [Fe( MeIm )6](ClO4)2 ( 1 ), [Fe( EtIm )6](ClO4)2 ( 2 ), [Fe( PrIm )6](ClO4)2( 3 ), [Fe( MeTz )6](ClO4)2 ( 4 ), [Fe( MeIm )6](MeSO3)2 ( 5 ), [Fe( EtIm )6](MeSO3)2 ( 6 ), and [Fe( MeTz )6](BF4)2 ( 10 ); (b) [Fe( MeIm )4(MeSO3)2]( 7 ), [Fe( EtIm )4(MeSO3)2] ( 8 ), and [Fe( PrIm )4(MeSO3)2] ( 9 ); (c) [Fe( MeIm )4(NCS)2] ( 15 ), [Fe( EtIm )4(NCS)2] ( 16 ), and [Fe( MeTz )4(NCS)2] ( 17 ). Single crystal X‐ray diffraction studies were performed on 7 – 10 and 15 – 17 . Temperature dependent magnetic susceptibility measurements were performed on selective examples of all series, and confirmed them to be in the HS state over the range 6–300 K. DFT calculations were performed at BP86/def‐SV(P) and TPSSh/def2‐TZVPP level on all [Fe L 6]2+ complex cations and the neutral complexes 7 – 9 and 15 – 17 . Additionally the four homoleptic nickel(II) complexes [Ni L 6](ClO4)2 ( 11 : L = MeIm ; 12 : L = EtIm ; 13 : L = PrIm ; 14 : L = MeTz ) were synthesized and compounds 11 – 13 structurally characterized. UV/Vis/NIR spectroscopic measurements were carried out on all homoleptic iron(II) and nickel(II) complexes. The 10Dq values were determined to be in the range of 11547–11574 and 10471–10834 cm–1 for the iron(II) and nickel(II) complexes, respectively.  相似文献   

12.
The photochemical CO-loss products of the diruthenium complexes [CpRu(CO) 2]2 (5; Cp = 5-C5H5), [Cp*Ru(CO)2]2 (5*; Cp* = 5-C5(CH3)5) and CpCp*[Ru(CO)2]2 (5) have been studied experimentally in low-temperature (96 K) matrices in 3-methylpentane by using IR spectroscopy. It is proposed that all three complexes undergo single-CO-loss chemistry but that the products have different structures. The single-CO-loss product from 5 is proposed to have one bridging and two terminal carbonyl ligands, whereas 5* and 5 generate triply bridged CO-loss products similar to that observed from [CpFe(CO)2]2 and [Cp*Fe(CO)2]2. Double-CO-loss from 5* and 5* 9 is also apparently observed. Relativistic DFT calculations have been carried out on various isomers of the starting materials and on potential CO-loss products from 5. The calculations suggest that the triply bridged product Cp2Ru2(-CO)3 (6) might have a singlet ground state in contrast to the corresponding diiron complex Cp2Fe2(-CO)3 (3), which has a triplet ground state.  相似文献   

13.
Zirconium fluoro complexes with phosphoryl-containing bases (L) have been synthesized by the reaction of a suspension of ZrF4(dmso)2 in toluene with an excess of Ph3PO or Bu3PO, as well as (Me2N)3PO in CH2Cl2. The composition and structure of the complexes in CH2Cl2 solutions have been studied by 19F NMR in the temperature range 293–203 K. Phosphine oxides are substituted for dmso to form mainly cis-tetrafluoro species, insignificant amounts of trans-tetrafluoro species, and mer- and fac-[ZrF3L3]+ complexes. In addition to these species, the reaction with Bu3PO yields the dimeric oxo complex (µ-O)[ZrF3(Bu3PO)2]2. Hydrolysis of fluoro complexes in CH2Cl2 with the use of an NBu4OH solution in iso-PrOH does not lead to oxo and hydroxo complexes: first, the [ZrF5L] complex is formed, and the final hydrolysis product is ZrF62-. The fine structure of 19F NMR resonance lines for the zirconium fluoride compounds [ZrF5L], cis- [ZrF4L2], dimeric oxo complex, and mer-[ZrF3L3]+ in organic solvents has been observed for the first time, which makes it possible to reliably identify the composition and structure of the zirconium coordination polyhedron in the complexes under consideration.  相似文献   

14.
Cu(ClO4)2·6H2O was shown to react with 2,2′-[propane-1,3-diylbis(thio-2-phenylnemethylidene]-bis(3-pyridylamine) (I) or (5Z)-2-ethoxycarbonylmethyl-(2-pyridylmethylidene)-3,5-dihydro-4H-imidazol-4-one (II) in the presence of CH3CN with the reduction of copper(II) to copper(I) and the formation of the tetrahedral complex CuI(CH3CN)4ClO4 (III). In the course of the reaction the organic ligands I and II were oxidized to the corresponding sulfoxides.  相似文献   

15.
A number of mononuclear manganese(II) and manganese(III) complexes have been synthesized from tridentate N2O aminophenol ligands (HL1–HL5) formed by reduction of corresponding Schiff bases with NaBH4. Three types of tridentate N2O aminophenols have been prepared by reducing with NaBH4which are (a) Schiff bases obtained by bromo salicylaldehyde reaction with N,N-dimethyl/N,N-diethyl ethylene diamine (HL1, HL2), (b) Schiff bases obtained by condensing salicylaldehyde/bromo salicylaldehyde and picolyl amine (HL3, HL4), (c) pyridine-2-aldehyde and 2-aminophenol (HL5). All the manganese complexes have been prepared by direct addition of manganese perchlorate to the corresponding ligands and were characterized by the combination of i.r., u.v.–vis spectroscopy, magnetic moments and electrochemical studies. The u.v.–vis spectra of all of the manganese(III) complexes show two weak d–d transitions in the 630–520 nm region, which support a distorted octahedral geometry. The electron transfer properties of all of the manganese(III) complexes (1–4 and 6) exhibit mostly similar characteristics consisting two redox couples corresponding to the MnIII → MnII reductions and MnIII → MnIV oxidations. The electronic effect on the potential has also been studied by changing different substituents in the ligands. In all cases, an electron-donating group stabilizes the higher oxidation state and electron withdrawing group prefers the lower oxidation state. The cyclic voltammogram of [MnII(L5)2] shows an irreversible oxidation MnII → MnIII at −0.88 V, followed by another quasi-reversible oxidation MnIII → MnIV at +0.48 V. The manganese(III) complex (3) [Mn(L3)2]ClO4has been characterized by X-ray crystallography.  相似文献   

16.
A controlled substitution reaction of the chlorine atoms of 1,3,5-benzenetricarbonyl trichloride by the organoiron fragment (CpFe(CO)2S) has been achieved. The complexes CpFe(CO)2SCO-3,5-C6H3(COCl)2 (1), 1,3-[CpFe(CO)2SCO]2-5-C6H3COCl (2) and 1,3,5-[CpFe(CO)2SCO]3C6H3 (3) were prepared from the reaction of (μ-S x )[CpFe(CO)2]2 (x = 3, 4) with 1,3,5-C6H3(COCl)3 in a 1:1, 2:1, or 3:1 metal to ligand molar ratio. The reactions of (1) with amines, thiols, and carboxylic acids produce the trifunctional mono-iron complexes CpFe(CO)2SCO-3,5-C6H3(COY)2 [Y = NR2 (4), SR (5), OCOR (4)]. The X-ray structure determination of (1) is reported.  相似文献   

17.
In the compound [Ni(Bptc)2(Bimb)2(H2O)2] (I), where H4Bptc is 3,3′,4,4′-biphenyltetracarboxylic acid; Bimb is 4,4′-bis(1-imidazolyl)biphenyl), Ni(II) has a distorted octahedral coordination geometry, which was bonded with two N atoms from two Bimb ligands, two O atoms from two H2Bptc2− ligands and two water O atoms. The crystal structure of compound I is stabilized by the π-π-stacking and hydrogen bonds interaction.  相似文献   

18.
The single crystals of [UO2(C2O4){CONH2N(CH3)2}2] were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 7.461(2) Å, b = 8.828(2) Å, c = 11.756(2) Å, β = 107.21(3)°, space group Pc, Z = 2, R = 2.94%. The structure comprises infinite chains [UO2(C2O4){CONH2N(CH3)2}2] extended along [001] and corresponding to the AT11M 2 1 crystallochemical group (A = UO 2 2+ , T11 = C2O 4 2? , M1 = N,N-CONH2N(CH3)2) of uranyl complexes. The chains are connected into a three-dimensional framework by hydrogen bonds involving the oxygen atoms of oxalate and uranyl ions and the N,N-dimethylcarbamide methyl groups.  相似文献   

19.
The synthesis, characterization and thermal analysis of the novel cyclometallated compounds [Pd2(dmba)2Cl2(μ-bpe)] (1), [Pd2(dmba)2(N3)2(μ-bpe)] (2), [Pd2(dmba)2(NCO)2(μ-bpe)] (3), [Pd2(dmba)2(SCN)2(μ-bpe)] (4), [Pd2(dmba)2(NO3)2(μ-bpe)] (5) (bpe=trans-1,2-bis(4-pyridyl)ethylene; dmba=N,N-dimethylbenzylamine) are described. The thermal stability of [Pd2(dmba)2X2(μ-bpe)] complexes varies in the sequence 1>4>3>2>5. The final residues of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.  相似文献   

20.
The complexes [Fe(DfgH)2(3-CONH2-Py)2] (I) and [Fe(DfgH)2(4-COOC2H5-Py)2] (II), where DfgH2 is α-benzyl dioxime, were obtained and examined by X-ray diffraction analysis. The equatorial planes of the coordination octahedra of the metal ions consist of two monodeprotonated α-benzyl dioxime residues united through intramolecular hydrogen bonds O-H…O into a pseudomacrocyclic system. The neutral molecules 3-CONH2-Py and 4-COOC2H5-Py are coordinated to the Fe2+ ion through the N atom of the heterocycle. Structure I is layered and structure II is molecular. Intermolecular interactions N-H…O are responsible for the formation of layers in crystal structure I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号