首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Human serum albumin (HSA), a major plasma protein and plasma-derived therapeutic, interacts with a wide variety of drugs and native plasma metabolites. In this study the interactions of costunolide (CE) and dehydrocostuslactone (DE) with HSA were investigated by molecule modeling, atomic force microscopy (AFM), and different optical techniques. In the mechanism discussion, it was proved that fluorescence quenching of HSA by both of the drugs is a result of the formation of drug-HSA complexes. Binding parameters for the reactions were determined according to the Stern-Volmer equation and static quenching. The results of thermodynamic parameters ΔG0, ΔH0, and ΔS0 at different temperatures indicated that hydrogen bonding interactions play a major role in the drug-HSA associations process. The binding properties were further studied by quantitative analysis of CD, FTIR, and Raman spectra. Furthermore, AFM results showed that the dimension of HSA molecules became more swollen after binding with the drugs.  相似文献   

2.
The interaction mechanism of Acid Orange 6 (AO6) with human serum albumin (HSA) was investigated firstly by using fluorescence quenching technique, UV absorbance, circular dichroism (CD), Fourier transform infrared (FT-IR), three-dimensional fluorescence spectroscopy in combination with molecular modeling method under simulative physiological conditions. Fluorescence data indicated that there is a single class of binding sites between AO6 and HSA, and the alterations of HSA secondary structure in the presence of AO6 was confirmed by synchronous fluorescence, UV, CD, FT-IR and three-dimensional fluorescence spectra. The efficiency of fluorescence resonance energy transfer provided the binding distance (r) of 2.83 nm for AO6-HSA system. Furthermore, the thermodynamic parameters enthalpy change (ΔH0) and entropy change (ΔS0) for the reaction were calculated to be −5.77 kJ mol−1 and 109.42 J mol−1 K−1, respectively, according to Van't Hoff equation, these data suggested that both hydrophobic forces and hydrogen bonding play a major role in the binding of AO6 to HSA, which agrees well with the results of molecular modeling study. Experimental results showed that the interaction between AO6 and HSA induced a conformational change of HSA, which was proved by the qualitative and quantitative analysis data of different spectroscopic techniques under simulative physiological conditions.  相似文献   

3.
The binding properties of diprophylline (DPP) to lysozyme (Lys) were investigated using fluorescence spectroscopy in combination with UV-vis absorption techniques under simulative physiological conditions. Results of fluorescence measurement indicated that the intrinsic fluorescence of Lys was strongly quenched by DPP. The binding constants and the number of binding sites at different temperatures (298, 310, and 318 K) calculated with the data obtained from fluorescence quenching experiments via the modified Stern-Volmer equation were 8.61×104 L mol−1 and 1.34; 10.36×104 L mol−1 and 1.22; 12.85×104 L mol−1 and 1.11, respectively. Positive values of ΔH0 and ΔS0 obtained according to the Van’t Hoff equation for the formation of the DPP-Lys complex implied that typical hydrophobic interactions might play a significant role during the binding process. Furthermore, the effect of DPP on the conformation change of Lys was analyzed using synchronous fluorescence measurement. The effects of common co-ions on the interaction of DPP with Lys were also discussed.  相似文献   

4.
The mechanism of interaction between tabersonine (TAB) and human serum albumin (HSA) was investigated by the methods of fluorescence spectroscopy, UV–vis absorption spectroscopy and molecular modeling under simulative physiological conditions. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that TAB has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding site number n and apparent binding constant Ka, corresponding thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated. The distance r between donor (human serum albumin) and acceptor (tabersonine) was obtained according to the Förster theory of non-radiation energy transfer. The effect of common ions on binding constant was also investigated. The synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of HSA molecules with addition of TAB. Furthermore, the study of molecular modeling indicated that TAB could bind to the site I of HSA and hydrophobic interaction was the major acting force, which was in agreement with the binding mode study.  相似文献   

5.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

6.
The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin–BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of BSA–scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA–scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV–vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated.  相似文献   

7.
A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON–HSA/BSA complexes were formed. The binding constant (Kb) for HSA and was found to be 8.44×10?4 and 60.26×10?4 M?1 and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, ΔH and ΔS, for the DON–HSA system was calculated to be ?14.83 kJ mol?1 and 23.61 J mol?1 K?1, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. ΔH and ΔS for the binding of DON with BSA was ?60.08 kJ mol?1 and ?90.7441 mol?1 K?1, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl?Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1–10.0 μM for HSA, 0.1–11.2 μM for BSA and 0.2–9.7 μM for egg albumin (EA). The detection limit (3σ) for HSA was 1.12×10?10 M, for BSA it was 0.92×10?10 M and for EA it was 4.33×10?10 M. The effect of metal cations on the fluorescence spectra of DON in ethanol was also investigated. The method has been applied to detect the total proteins in human serum samples and the results were in good agreement with those reported by the hospital.  相似文献   

8.
In this study, the interaction between bisphenol A (BPA) or its degraded solution under microwave irradiation after their adsorption on activated carbon (AC/MW) and human serum albumin (HSA) was investigated by UV-vis and fluorescence spectroscopy techniques. The results showed that BPA could bind to HSA molecule, which could cause the stretch of peptide chains. Also, the degraded BPA solution with a few residues could still interact with HSA. Otherwise, the influences of pH and ionic strength on the interaction were estimated. The fluorescence quenching modes of HSA initiated by BPA at three temperatures (298, 310 and 315 K) were all obtained using Stern-Volmer and Lineweaver-Burk equations. The number of binding sites (n), binding constants (KD) and energy transfer efficiency (E) were all calculated. The thermodynamic parameters (ΔH, ΔG and ΔS) and binding distances (r) were all measured at the three temperatures, respectively. Synchronous fluorescence spectroscopy was also carried out.  相似文献   

9.
The interaction between vitexin and human serum albumin (HSA) has been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of vitexin to HSA. The binding constants (Ka) between vitexin and HSA were obtained according to the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be -57.29 kJ mol−1 and -99.01 J mol−1 K−1 via the van't Hoff equation, which indicated that the interaction of vitexin with HSA was driven mainly by hydrogen bond and van der Waals forces. Fluorescence anisotropy data showed that warfarin and vitexin shared a common binding site I corresponding to the subdomain IIA of HSA. The binding distance (r) between the donor (HSA) and the acceptor (vitexin) was 4.16 nm based on the Förster theory of non-radioactive energy transfer. In addition, the results of synchronous fluorescence, CD and FT-IR spectra demonstrated that the microenvironment and the secondary structure of HSA were changed in the presence of vitexin.  相似文献   

10.
The binding of nobiletin to human serum albumin (HSA) was investigated by fluorescence, UV-vis, FT-IR, CD, and molecular modeling. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) at four different temperatures (289, 296, 303 and 310 K) were 4.054, 4.769, 5.646 and 7.044×104 M−1, respectively. The enthalpy change (ΔH0) and the entropy changes (ΔS0) were calculated to be 1.938 kJ mol−1 and 155.195 J mol−1 K−1 according to the Van’t Hoff equation. The binding average distance, r, between the donor (HSA) and the acceptor (nobiletin) was evaluated and found to be 2.33 nm according to the Förster's theory of non-radiation energy transfer. Changes in the CD and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. Computational mapping of the possible binding sites of nobiletin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

11.
研究药物和血液中载体蛋白的相互作用对阐明药物在体内的转运、分布、代谢和药效等具有重要意义。运用稳态荧光、紫外-可见吸收光谱、动力学瞬态发射光谱和循环伏安法研究了抗艾滋病(HIV)药物司他夫定(stavudine,D4T)对人血清白蛋白(HSA)、牛血清白蛋白(BSA)和血红蛋白(Hb)三种血液蛋白的荧光猝灭机制,均为静态猝灭;得出不同温度(300 K,310 K,320 K)下D4T和载体的结合常数Ka(Ka的大小顺序为Hb>HSA>BSA)和结合位点数n(n均为1);分析二者结合过程的热力参数ΔHS和ΔG,三种血液蛋白均为ΔG>0,ΔH>0,说明D4T和载体的结合是一种自发的放热过程,同时由ΔH<0,ΔS<0,推测出D4T与HSA,BSA和Hb之间的结合力都为氢键和范德华力;根据Frster非辐射能量转移理论(FRET)分析了供体(蛋白)和受体(D4T)之间发生能量转移的可能性并计算了结合距离R0r,其中r<7 nm且0.5R0r<1.5R0,表明从HSA,BSA和Hb到D4T之间发生能量转移的可能性很大。同时利用同步荧光,三维荧光和圆二色谱法得出,D4T与载体结合时对载体(HSA,BSA和Hb)的二级结构无影响,且三级构象变化不大。通过本文实验可知,HSA,BSA和Hb三种血液蛋白均可作为运输D4T到靶位置的良好载体蛋白,这些结果为更深入研究D4T药物分子设计和抗HIV作用的应用提供有利的实验依据。  相似文献   

12.
Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy ΔH0 and entropy ΔS0, have been calculated to be −29.52 kJ mol−1 and −24.23 J mol−1 K−1, respectively, according to the Van’t Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies.  相似文献   

13.
Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin–Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin–Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (Kb) values are of the order of 105 M?1 which increased with rise in temperature in case of HSA and BSA interacting with the quercetin–Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both ΔH° and ΔS° were positive for the interaction of the quercetin–Cu(II) complex with both proteins but the value of ΔH° was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities.  相似文献   

14.
Phenosafranine is a toxic and recalcitrant compound, whose capacity to intercalate with double stranded DNA has been shown. In this contribution, a biophysical discuss on the conjugation of phenosafranine with two model proteins human serum albumin (HSA) and lysozyme (Lys) has been identified utilizing a combination of molecular modeling, steady state and time-resolved fluorescence and circular dichroism (CD) approaches. The accurate binding domain of phenosafranine in protein has been characterized from molecular modeling, subdomain IIIA of HSA and Trp-62, Trp-63 and Trp-108 residues of Lys was designated to possess high-affinity for this compound, the dominant forces in the protein–phenosafranine adduct are hydrogen bonds and ππ interactions, but hydrophobic interactions between dye and Lys are also not exclude. The data of fluorescence displayed that the complex of phenosafranine with protein produces quenching through static property, this corroborates the time-resolved fluorescence results that the ground state complex formation with a moderate affinity of 104 M?1. Moreover, via synchronous fluorescence, CD and three-dimensional fluorescence we indicated some extent of polypeptide chain of protein partially unfolding upon conjugation with phenosafranine. Through this work, we anticipate it can supply salient clues on the toxicological action of phenosafranine and other azines, which have analogous configuration with phenosafranine.  相似文献   

15.
The interaction of La3+ to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by La3+ was a static quenching process and the binding constant is 1.75×104 L mol−1 and the number of binding sites is 1 at 289 K. The thermodynamic parameters (ΔH=−20.055 kJ mol−1, ΔG=−23.474 kJ mol−1, and ΔS=11.831 J mol−1 K−1) indicate that electrostatic effect between the protein and the La3+ is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of La3+ changed the conformation of BSA.  相似文献   

16.
Prulifloxacin is a kind of new oral taking antibiotic of fluoroquinolone. Conjugation reaction of prulifloxacin with trypsin in Britton-Robinson buffer solution of pH 7.96 was analyzed by UV-vis spectrophotometry and fluorescence spectrometry. The intrinsic fluorescence of trypsin was strongly quenched by prulifloxacin. This effect was rationalized in terms of a static quenching procedure. The binding parameters have been evaluated by fluorescence quenching methods. Negative values ΔG0 for the formation of prulifloxacin-trypsin complex implied that both hydrogen bonds and hydrophobic interactions might play a significant role in prulifloxacin binding to trypsin. The binding distance deduced from the efficiency of energy transfer was 0.84 nm for prulifloxacin-trypsin. Furthermore, association constants and binding mechanism were successfully derived from the fluorescence spectra. UV-vis detections supported a change in the secondary structure of proteins caused by the interaction of prulifloxacin with trypsin.  相似文献   

17.
Docetaxel is a semi-synthetic product derived from the needles of the European yew. It is an antineoplastic agent belonging to the taxoid family. The interaction between docetaxel and human serum albumin (HSA) has been investigated systematically by the fluorescence quenching technique, synchronous fluorescence spectroscopy, ultraviolet (UV)-vis absorption spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) under physiological conditions. Our fluorescence data showed that HSA had only one docetaxel binding site and the binding process was a static quenching procedure. According to the Van’t Hoff equation, the thermodynamic parameters standard enthalpy (ΔH0) and standard entropy (ΔS0) were calculated to be −41.07 KJ mol−1 and −49.72 J mol−1 K−1. These results suggested that hydrogen bond was the predominant intermolecular force stabling the docetaxel-HSA complex. The data from the CD, FT-IR and UV-vis spectroscopy supported the change in the secondary structure of protein caused by the interaction of docetaxel with HSA.  相似文献   

18.
Puerarin is a widely used compound in Chinese traditional medicine and exhibits many pharmacological activities. Binding of puerarin to human serum albumin (HSA) was investigated by ultraviolet absorbance, fluorescence, circular dichroism and molecular docking. Puerarin caused a static quenching of intrinsic fluorescence of HSA, the quenching data was analyzed by Stern–Volmer equation. There was one primary puerarin binding site on HSA with a binding constant of 4.12 × 104 M−1 at 298 K. Thermodynamic analysis by Van Hoff equation found enthalpy change () and entropy change () were −28.01 kJ/mol and −5.63 J/mol K respectively, which indicated the hydrogen bond and Van der waas interaction were the predominant forces in the binding process. Competitive experiments showed a displacement of warfarin by puerarin, which revealed that the binding site was located at the drug site I. Puerarin was about 2.22 nm far from the tryptophan according to the observed fluorescence resonance energy transfer between HSA and puerarin. Molecular docking suggested the hydrophobic residues such as tyrosine (Tyr) 150, Tyr 148, Tyr 149 and polar residues such as lysine (Lys) 199, Lys 195, arginine 257 and histidine 242 played an important role in the binding reaction.  相似文献   

19.
The water-soluble Pr (Ⅲ) and Nd (Ⅲ) complexes with an ofloxacin derivative have been prepared and characterized. The single-crystal X-ray diffraction showed that the Pr (III) and Nd (III) complexes have the similar molecular structure. Under physiological pH condition, the effects of [PrL(NO3)2(CH3OH)](NO3) and [NdL(NO3)2(CH3OH)](NO3) on bovine serum albumin (BSA) were examined using fluorescence spectroscopy in combination with UV-vis absorbance and circular dichroism (CD) spectra. The result reveals that the quenching mechanism of fluorescence of BSA by two complexes is a static quenching process and the number of binding sites is about 1 for both. The thermodynamic parameters (ΔH=−14.52 kJ mol−1, ΔS=56.54 J mol−1 K−1 for [PrL(NO3)2(CH3OH)](NO3) and ΔH=−24.63 kJ mol−1, ΔS=22.07 J mol−1 K−1 for [NdL(NO3)2(CH3OH)](NO3)) indicate that hydrophobic and electrostatic interactions are the main binding force in the complexes-BSA system. The binding average distance between complexes and BSA was obtained on the basis of Förster's theory. In addition, it was proved by the CD spectra that the BSA secondary structure was changed in the presence of complexes in an aqueous solution.  相似文献   

20.
The interaction between lomefloxacin (LMF) and human lactoferrin (Hlf) was studied by using fluorescence, circular dichroism (CD) spectroscopic and molecular modeling measurements. By the fluorescence quenching results, it was found that the binding constant KA=8.69×105 L mol−1, and number of binding sites n=1.75 at physiological condition. Experimental results observed showed that the binding of LMF to Hlf induced conformational changes of Hlf. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-Hlf complex by synchronous fluorescence. The quantitative analysis data of far-UV CD spectra from that of the α-helix 37.4% in free Hlf to 30.2% in the LMF-Hlf complex further confirmed that secondary structure of the protein was changed by LMF. Near-UV CD showed perturbations around tryptophan and tyrosine residues which involves perturbations of tertiary structure. The thermodynamic parameters like, ΔH° and ΔS°, have been calculated to be 63.411 kJ mol−1 and 231.104 J mol−1 K−1, respectively. Thermodynamic analysis showed that hydrophobic interactions were the main force in the binding site but the hydrogen bonding and electrostatic interaction could not be excluded which in agreement with the result of molecular docking study. The distance r between donor and acceptor was obtained according to fluorescence resonance energy transfer (FRET) and found to be 1.78 nm. The interaction between LMF and Hlf has been verified as consistent with the static quenching procedure and the quenching mechanism is related to the energy transfer. Furthermore, the study of molecular modeling that LMF could bind to the α-helixes between Pro145-Asn152 and Phe167-Gln172 regions and hydrophobic interaction was the major acting force for the binding site, which was in agreement with the thermodynamic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号