首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Motivated by recent experimental studies on coherent dynamics transfer in three interacting atoms or electron spins [Phys. Rev. Lett 114(2015) 113002, Phys. Rev. Lett 120(2018) 243604], here we study entanglement entropy transfer in three interacting qubits. We analytically calculate time evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. Thus dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer,characterized by the quantum mutual information and concurrence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.  相似文献   

2.
By means of composite quantum collision models, we study the entanglement dynamics of a bipartite system, i.e.,two qubits S1 and S2 interacting directly with an intermediate auxiliary qubit SA, while SAis in turn coupled to a thermal reservoir. We are concerned with how the intracollisions of the reservoir qubits influence the entanglement dynamics. We show that even if the system is initially in the separated state, their entanglement can be generated due to the interaction between the qubits. In the long-time limit, the steady-state entanglement can be generated depending on the initial state of S1 and S2 and the environment temperature. We also study the dynamics of tripartite entanglement of the three qubits S1,S2, and SAwhen they are initially prepared in the GHZ state and separated state, respectively. For the GHZ initial state,the tripartite entanglement can be maintained for a long time when the collision strength between the environment qubits is sufficiently large.  相似文献   

3.
We study the dynamics of quantum discord between two qubits coupled collectively to a thermal reservoir. For comparison, we also consider the dynamics of quantum entanglement. It is shown that we can obtain a stable quantum discord induced by the thermal environment when the discord of the initial state is zero. The thermal environment can also induce a stable amplification of the initially prepared quantum discord for certain X-type states. It is very valuable that the quantum discord is more resistant against the thermal environment than quantum entanglement. And, we have demonstrated that the sudden death of discord in a Markovian regime is impossible even at high temperature. It provides us a feasible way to create and protect quantum correlation in the case of a high-temperature thermal environment for various physical system such as trapped ions, quantum dots or Josephson junctions.  相似文献   

4.
By means of collision models(CMs) where the environment is simulated by a collection of ancillas consisting of two entangled qubits, we investigate the effects of entanglement in the environment on the non-Markovianity of an open quantum system. Two CMs are considered in this study, in the first one the open quantum system S directly collides with the environment,while in the second one the system interacts with two intermediate qubits which, in turn, are coupled to the environment. We show that it is possible to enhance the non-Markovianity by environment entanglement in both models. In particular, in the second model, we show that the initial state of the auxiliary qubits can also affect the non-Markovianity of the system and there exists the optimal combination of the initial environmental state and the initial state of auxiliary qubits. In this case, the non-Markovianity can be greatly enhanced.  相似文献   

5.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

6.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

7.
We study the time evolution of the classical and quantum correlations for interacting and noninteracting two-qubit systems under the influence of noncorrelated and correlated environmental models. We discuss the dependence of different physical quantifiers on the environment parameters. Interestingly, we examine the effects of the initial state and different system parameters on the evolution of correlations of the system of qubits in contact with different kinds of environments. We show how the interaction among qubits can protect and preserve the correlation loss during the time evolution for various environmental models. Moreover, we examine the competition between the dissipative and coherent effects in different kinds of correlations dynamics of the system of qubits. Our study gives a deeper understanding on the correlations for a wide variety of the environment models, which is rather significant in different tasks of quantum optics and information.  相似文献   

8.
贺志  李龙武 《物理学报》2013,62(18):180301-180301
通过精确求解带有偶极-偶极相互作用的两个二能级原子与一个共同热库相互作用模型, 得到了两原子间量子纠缠和量子失谐(quantum discord)的解析表达式. 综合考虑了环境的非马尔可夫效应、原子间的偶极-偶极相互作用以及原子的本征频率同腔模中心频率之间的失谐量对两原子间量子纠缠和quantum discord的影响. 研究显示: 在非马尔可夫机制下, 且原子的本征频率与腔模中心频率是共振时, 当两原子初态处于纠缠态时, 原子间偶极-偶极相互作用可以显著抑制包括量子纠缠和quantum discord等量子关联的衰减, 更特别的是, 如果原子的本征频率同腔模中心频率有一定的失谐时, 利用原子间偶极-偶极相互作用可大大地延长两原子退纠缠的时间; 当两原子初态处于可分离态时, 从短时间来看, 原子间偶极-偶极相互作用可以提高量子纠缠和quantum discord振荡的振幅,而在长时间极限下, 原子间偶极-偶极相互作用不会改变量子纠缠和quantum discord达到的稳定值. 最后, 讨论了原子间偶极-偶极相互作用对量子纠缠和quantum discord动力学不同的影响. 关键词: 量子纠缠 量子失谐 共同环境 偶极-偶极相互作用  相似文献   

9.
We investigate the quantum entanglement and supercurrent of coupling superconducting qubits in circuit QED system. We compare the effect of the relative phase of the coupling qubits on the concurrence and supercurrent when the microwave field is initially in coherent state, even coherent state and odd coherent state. The results show that entanglement death can be avoided via manipulating the relative phase only in the coherent state since the improvement for entanglement death is unsatisfactory in the even coherent state and odd coherent state.  相似文献   

10.
We studied quantum correlation and quantum entanglement of a quantum system in which a coherent state light field interacts with two qubits that are initially prepared in a separable and mixed state.The influence of mean photon number of the coherent field and distribution probability of the atom on the geometrical quantum discord and the negativity are discussed.Our results show that the mean photon number of light field and distribution function of the atom can regulate and control the quantum correlation and quantum entanglement.  相似文献   

11.
Y.H. Ji  W.D. Li  S.J. Wen 《Optik》2013,124(24):6882-6886
The paper investigates the dynamic evolution behaviors of entanglement and quantum discord of coupled superconducting qubits in circuit QED system. We put emphasis on the effects of cavity field quantum state on quantum entanglement and quantum correlations dynamic behaviors of coupling superconducting qubits. The results show that, (1) generally speaking, the entanglement will appear the death and new birth because of the interaction between qubits and cavity field, on the contrary, this phenomenon will not appear in quantum discord. (2) When the cavity field is in coherent state, the entanglement survival time is controlled by the average photon number. The more the average photon number is, the longer survival time of entanglement is prolonged. Thus it has the benefit of keeping quantum correlations. (3) When the cavity field is in squeezed state, the squeezed amplitude parameters have controlling effects on quantum correlations including entanglement and quantum discord. On the one hand, the increase of squeezed amplitude parameters can prolong the survival time of entanglement, on the other hand, with the increase of squeezed amplitude parameters, the robustness of quantum discord is more and more superior to concurrence and is more advantage to keep the system quantum correlations. The further study results show that the increase of the initial relative phase of coupling superconducting qubits can also keep the quantum correlations.  相似文献   

12.
We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.  相似文献   

13.
By investigating the effect of environmental perturbations on two initially coupled qubits, we find that the interactions between the qubits and between the qubits and the environment are not only the source of decoherence, but also the power of avoiding disentanglement. It is shown that there are the entangled subspaces for four kinds of different coupling ways between the qubits, in which the qubits preserve entanglement all the time. Thus, any new coherent source does not be introduced to preserve entanglement in the entangled subspaces.  相似文献   

14.
曹连振  刘霞  赵加强  杨阳  李英德  王晓芹  逯怀新 《物理学报》2016,65(3):30303-030303
量子信息技术主要基于量子纠缠,量子纠缠源作为重要的相干叠加态,其相干性很容易受到环境的影响而变得非常脆弱,甚至导致量子信息处理的失败.因此,全面揭示不同噪声环境和不同噪声信道下量子纠缠源演化规律,进而探寻抑制退相干的方法就显得至关重要.本文以量子信息最基本的单元-两比特纠缠对作为研究对象,实验上利用线性光学系统模拟了比特翻转和相移噪声(集体和非集体),研究了纠缠源在不同噪声环境及单、双和混合噪声信道下保真度的变化规律.实验结果表明:对同一种噪声类型,当纠缠比特经过双通道噪声环境时,其纠缠特性破坏得快;当纠缠比特经过非集体环境时,其纠缠特性消失得快.对不同噪声类型比较,结果表明比特翻转噪声相对于相移噪声更容易破坏纠缠特性.所得结论对纠缠退相干的理论和实验研究具有重要的借鉴意义,同时对基于非线性光学系统的量子信息处理技术具有重要的应用价值.  相似文献   

15.
By using geometric quantum discord and measurement-induced nonlocality, quantum correlations are investigated for two superconducting (SC) charge qubits that share a large Josephson junction where the field is assumed to be prepared initially in a coherent state. It is found that the difference between measure measurement-induced nonlocality and geometric quantum discord, of the final state of the two SC-charge qubits system which is especial case of X-states, is equal to a constant value. It is found that the quantum correlations and entanglement of the qubits are very sensitive to the mean number of the coherent photons. The entanglement exists in small intervals of death quantum discord and measurement-induced nonlocality. This is further evidence in support of the fact that quantum correlation and entanglement are not synonymous.  相似文献   

16.
Recently, the effect of initial qubit-reservoir correlation for two qubits in a common reservoir on the entanglement dynamics has been studied by Yan and Xia (Acta Sinica Quantum Optica 20, 16 2014). We extend their results and investigate how the initial qubit-reservoir correlation and dipole-dipole interaction between two qubits effect on dynamics of quantum discord in Markovian and non-Markovian regimes, respectively. The results show that in general, the larger initial qubit-reservoir correlation and dipole-dipole interaction can retard the decay of quantum discord. Besides, a combination of relatively strong dipole-dipole interaction and non-Markovian effect can efficiently protect quantum discord. Finally,thecomparisonbetweenevolutionsofquantumdiscordandentanglementisalsoconsidered.  相似文献   

17.
颜益营  秦立国  田立君 《中国物理 B》2012,21(10):100304-100304
We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky-Moriya interaction.In the case of a two-qubit with an initial pure state,quantum correlations decay to zero at the critical point of the environment in a very short time.In the case of a two-qubit with initial mixed state,it is found that quantum discord may get maximized due to the quantum critical behavior of the environment,while entanglement vanishes under the same condition.Besides,we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment.The effects of Dzyaloshinsky-Moriya interaction on quantum correlations are considered in the two cases.The decay of quantum correlations is always strengthened by Dzyaloshinsky-Moriya interaction.  相似文献   

18.
In contrast with the entanglement, we study the quantum discord dynamics of the two-qubit system in a symmetry-broken environment consisting of a fermionic bath. The quantum discord decay induced by the bath is analysed. By considering the two qubits that are initially prepared in the different X-states, we find that the behaviors of quantum discord and entanglement are different, the robustness of quantum discord depends on the initial state prepared in.  相似文献   

19.
Entanglement dynamics of two qubits from environmental perturbations with different initial conditions is investigated. The results show that the qubit-qubit interaction leads to a periodic disentanglement and entanglement. It is surprised that the sudden death of entanglement (ESD) does not happen for non-interacting qubits, but for both the cases of a pure dephasing environment and a normal environment, ESD emerges. The results may provide a useful clue to implement an entanglement quantum information.  相似文献   

20.
The entanglement of two qubits is investigated in the range of their ultra-strongly coupling with a quantum oscillator. The two qubits are initially in four Bell states and they are under the control mechanism of the coherent state of the quantum oscillator. There are four parameters: the average number of the coherent state, the ultra-strong coupling strength, the ratio of two frequencies of qubit and oscillator, and the inter-interaction coupling of the two qubits in the mechanism, and they all are influential parameters on the entanglement of the two qubits. One Bell state |0>is easyily kept and is trivial case. The novel results show that there is one state |I0> among the other three Bell states which the entanglement of the two qubits could be almost completely preserved. The possibility is made into reality by the appropriate choice of the four influential parameters. We give two different schemes to choose the respective parameters to maintain the entanglment of |I0> almost undiminished. The results will be useful for the quantum information process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号