首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
In this article, we are concerned with the interactions of delta shock waves with contact discontinuities for the relativistic Euler equations for Chaplygin gas by using split delta functions method. The solutions are obtained constructively and globally when the initial data consists of three piecewise constant states. The global structure and large time‐asymptotic behaviors of the solutions are analyzed case by case. During the process of the interaction, the strengths of delta shock waves are computed completely. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with special initial data by letting perturbed parameter ε tends to zero. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The solutions to the Riemann problem for a nonsymmetric system of Keyfitz-Kranzer type are constructed explicitly when the initial data are located in the quarter phase plane. In particular, some singular hyperbolic waves are discovered when one of the Riemann initial data is located on the boundary of the quarter phase plane, such as the delta shock wave and some composite waves in which the contact discontinuity coincides with the shock wave or the wave back of rarefaction wave. The double Riemann problem for this system with three piecewise constant states is also considered when the delta shock wave is involved. Furthermore, the global solutions to the double Riemann problem are constructed through studying the interaction between the delta shock wave and the other elementary waves by using the method of characteristics. Some interesting nonlinear phenomena are discovered during the process of constructing solutions; for example, a delta shock wave is decomposed into a delta contact discontinuity and a shock wave.  相似文献   

3.
In this article, we study the interactions of delta shock waves for the one-dimensional Euler equations for Chaplygin gas with split delta functions. We constructively obtain the solutions when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, we obtain the stability of solutions by letting perturbed parameter ? tend to zero.  相似文献   

4.
This paper is devoted to studying the simplified nonlinear chromatography equations by introducing the change of state variables. The Riemann solutions containing delta shock waves are presented. In order to study wave interactions of delta shock waves with elementary waves, the global structure of solutions is constructed completely when the initial data are taken as three pieces of constants and the delta shock waves are included. In particular, the strength of delta shock wave is expressed explicitly and the delta contact discontinuity is discovered during the process of wave interactions. Moreover, by analyzing the limits of the solutions as the middle region vanishes, we observe that the Riemann solutions are stable for such a local small perturbation of the Riemann initial data.  相似文献   

5.
This paper is devoted to the interactions of the delta shock waves with the shock waves and the rarefaction waves for the simplified chromatography equations. The global structures of solutions are constructed completely if the delta shock waves are included when the initial data are taken three piece constants and then the stability of Riemann solutions is also analyzed with the vanishing middle region. In particular, the strength of delta shock wave is expressed explicitly and the delta contact discontinuity is discovered during the process of wave interaction.  相似文献   

6.
In this paper, we study the perturbed Riemann problem for a class of nonstrictly hyperbolic system of conservation laws, and focuse on the interactions of delta shock waves with the shock waves and the rarefaction waves. The global solutions are constructed completely with the method of splitting delta function. In solutions, we find a new kind of nonclassical wave, which is called delta contact discontinuity with Dirac delta function in both components. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. Moreover, by letting perturbed parameter $\varepsilon$ tend to zero, we analyze the stability of Riemann solutions.  相似文献   

7.
We consider non-linear Schrödinger equations with small complex coefficient of size d \delta in front of the Laplacian. The space-variable belongs to the unit n-cube (n3 (n \le {\bf 3} and Dirichlet boundary conditions are assumed on the cube's boundary. The equations are studied in the turbulent regime which means that d << 1 \delta \ll 1 and supremum-norms of the solutions we consider are at least of order one. We prove that space-scales of the solutions are bounded from below and from above by some finite positive degrees of d \delta and show that this result implies non-trivial restrictions on spectra of the solutions, related to the Kolmogorov-Obukhov five-thirds law (these restrictions are less specific than the 5/3-law, but they apply to a much wider class of solutions). Our approach is rather general and is applicable to many other nonlinear PDEs in the turbulent regime. Unfortunately, it does not apply to the Navier-Stokes equations.  相似文献   

8.
We prove that the Riemann solutions are stable for a nonstrictly hyperbolic system of conservation laws under local small perturbations of the Riemann initial data. The proof is based on the detailed analysis of the interactions of delta shock waves with shock waves and rarefaction waves. During the interaction process of the delta shock wave with the rarefaction wave, a new kind of nonclassical wave, namely a delta contact discontinuity, is discovered here, which is a Dirac delta function supported on a contact discontinuity and has already appeared in the interaction process for the magnetohydrodynamics equations [M. Nedeljkov and M. Oberguggenberger, Interactions of delta shock waves in a strictly hyperbolic system of conservation laws, J. Math. Anal. Appl. 344 (2008) 1143-1157]. Moreover, the global structures and large time asymptotic behaviors of the solutions are constructed and analyzed case by case.  相似文献   

9.
The Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws is considered. Without the restriction that each jump of the initial data projects one planar elementary wave, ten topologically distinct solutions are obtained by applying the method of generalized characteristic analysis. Some of these solutions involve the nonclassical waves, i.e., the delta shock wave and the delta contact discontinuity, for which we explicitly give the expressions of their strengths, locations and propagation speeds. Moreover, we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct unique global solutions.  相似文献   

10.
本文主要讨论扰动色谱方程delta激波解的行成和转换,并讨论上述方程的黎曼问题.当扰动参数趋于零时,通过研究黎曼解的极限,我们可以观察到如下两个重要现象:激波和接触间断重合行成delta激波,一类激波(一个变量含有delta函数).  相似文献   

11.
The introductory part of this paper contains an overview of known results about elementary and delta shock solutions to Riemann problem for well known Chaplygin gas model (nowadays used in cosmological theories for dark energy) in terms of entropic shadow waves. Shadow waves are introduced in [17] and they are represented by shocks depending on a small parameter ε with unbounded amplitudes having a distributional limit involving the Dirac delta function. In a search for admissible solutions to all possible cases of mutual interactions of waves arising from double Riemann initial data we found same cases that cannot be resolved with already known types of elementary or shadow wave solutions. These cases are resolved by introducing a sequence of higher order shadow waves depending on integer powers of ε. It is shown that such waves have a distributional limit but only until some finite time T.  相似文献   

12.
The paper solves analytically the Riemann problem for a nonstrictly hyperbolic system of conservation laws arising in geometrical optics,in which the flux contains the nonconvex function possessing an infinite number of inflection points.Firstly,the generalized Rankine–Hugoniot relations and entropy condition of delta shock waves and left(right)-contact delta shock waves are proposed and clarified.Secondly,with the help of the convex hull,seven kinds of structures of Riemann solutions are obtained.The solutions fall into three broad categories with a series of geometric structures involving simultaneously contact discontinuities,vacuums and delta shock waves.Finally,numerical experiments confirm the theoretical analysis.  相似文献   

13.
The Riemann solutions for the Euler system of conservation laws of energy and momentum in special relativity for polytropic gases are considered. It is rigorously proved that, as pressure vanishes, they tend to the two kinds of Riemann solutions to the corresponding pressureless relativistic Euler equations: the one includes a delta shock, which is formed by a weighted δ-measure, and the other involves vacuum state.  相似文献   

14.
In the frame of αsolutions defined in the setting of distributional products, the discontinuous solutions to the Riemann problem for a nonlinear chromatography system are constructed. All the discontinuous solutions are obtained within a convenient space of distributions including discontinuous functions and Dirac delta measures. The constructed αsolutions are reasonable in comparison with the known results by using other techniques.  相似文献   

15.
In this paper, we study the Riemann problem with the initial data containing the Dirac delta function for the isentropic relativistic Chaplygin Euler equations. Under suitably generalized Rankine–Hugoniot relation and entropy condition, we constructively obtain the global existence of generalized solutions including delta shock waves that explicitly exhibit four kinds of different structures. Moreover, it can be found that the solutions constructed here are stable for the perturbation of the initial data.  相似文献   

16.
We study a class of non-strictly and weakly hyperbolic systems of conservation laws which contain the equations of geometrical optics as a prototype. The Riemann problems are constructively solved. The Riemann solutions include two kinds of interesting structures. One involves a cavitation where both state variables tend to zero forming a singularity, the other is a delta shock wave in which both state variables contain Dirac delta function simultaneously. The generalized Rankine–Hugoniot relation and entropy condition are proposed to solve the delta shock wave. Moreover, with the limiting viscosity approach, we show all of the existence, uniqueness and stability of solution involving the delta shock wave. The generalized Rankine–Hugoniot relation is also confirmed. Then our theory is successfully applied to two typical systems including the geometric optics equations. Finally, we present the numerical results coinciding with the theoretical analysis.  相似文献   

17.
This paper is concerned with the interactions of $\delta$-shock waves for the Aw-Rascle traffic model with split delta functions. The solutions are obtained constructively when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with initial data by studying the limits of the solutions when the perturbed parameter $\varepsilon\rightarrow0$.  相似文献   

18.
The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.  相似文献   

19.
Interface problems modeled by differential equations have many applications in mathematical biology, fluid mechanics, material sciences, and many other areas. Typically, interface problems are characterized by discontinuities in the coefficients and/or the Dirac delta function singularities in the source term. Because of these irregularities, solutions to the differential equations are not smooth or discontinuous. In this paper, some new results on the jump conditions of the solution across the interface are derived using the distribution theory and the theory of weak solutions. Some theoretical results on the boundary singularity in which the singular delta function is at the boundary are obtained. Finally, the proof of the convergency of the immersed boundary (IB) method is presented. The IB method is shown to be first‐order convergent in L norm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
We study the existence and the structure of solutions to differential inclusions with constraints. We show that the set of all viable solutions to the Cauchy problem for a Carathéodory-type differential inclusion in a closed domain is an R -set provided some mild boundary conditions expressed in terms of functional constraints defining the domain are satisfied. Presented results generalize most of the existing ones. Some applications to the existence of periodic solutions as well as equilibria are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号