首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Students’ experiences with proving in schools often lead them to see proof as a static product rather than a negotiated process that can help students justify and make sense of mathematical ideas. We investigated how authority manifested in whole-class proving episodes within Ms. Finley’s high school geometry classroom. We designed a coding scheme that helped us identify the proving actions and interactions that occurred during whole-class proving and how Ms. Finley and her students contributed to those processes. By considering the authority over proof initiation, proof construction, and proof validation, the episodes illustrate how whole-class proving interactions might relate to students’ potential development (or maintenance) of authoritative proof schemes. In particular, the authority of the teacher and textbook limited students’ opportunities to engage collectively in proving and sometimes allowed invalid arguments to be accepted in the public discourse. We offer suggestions for research and practice with respect to authority and proof instruction.  相似文献   

2.
Student group work represents a central learning setting within mathematics programs at the university level. In this study, a theoretical perspective on collaboration is adopted in which the differences between students’ interpretations of a mathematical concept are seen as an opportunity for individual restructuring processes. This so-called interactionist perspective is applied to student group work on linear algebra. The concepts of linear algebra at the university level are characterized by a versatility of different modes of expression and interpretation. For students of linear algebra, the flexible transitions between the different interpretations of linear algebra concepts usually pose a challenge. This study focuses on how students negotiate their different interpretations during group work on linear algebra and how transitions between interpretations might be stimulated or hindered. Video recordings of eight student groups working on a task that required flexible transition between interpretations of homomorphisms were sampled. The recordings were analyzed from an interactionist perspective, focusing on interaction situations in which the participating students expressed and negotiated different interpretations of homomorphisms. The analyses of students’ interactions highlight a phenomenon whereby differences in students’ interpretations remain implicit in group discussions, which constitutes an obstacle to the negotiation process.  相似文献   

3.
The ideas of equivalence and variable are two of the most fundamental concepts in algebra. Most studies of students’ understanding of these concepts have posited a gap between the students’ conceptions and the institutional meanings for the symbols. In contrast, this study develops a theoretical framework for describing the ways undergraduate students use personal meanings for symbols as they appropriate institutional meanings. To do this, we introduce the idea of semiotic systems as a framework for understanding the ways students use collections of signs to engage in mathematical activity and how the students use these signs in meaningful ways. The analysis of students’ work during task-based interviews suggests that this framework allows us to identify the ways in which seemingly idiosyncratic uses of the symbols are evidence of meaning-making and, in many cases, how the symbol use enables the student to engage productively in the mathematical activity.  相似文献   

4.
This study investigates the influence of inquiry-oriented real analysis instruction on students’ conceptions of the situation of mathematical defining. I assess the claim that inquiry-oriented instruction helps acculturate students into advanced mathematical practice. The instruction observed was “inquiry-oriented” in the sense that they treated definitions as under construction. The professor invited students to create and assess mathematical definitions and students sometimes articulated key mathematical content before the instructor. I characterize students’ conceptions of the defining situation as their (1) frames for the classroom activity, (2) perceived role in that activity, and (3) values for classroom defining. I identify four archetypal categories of students’ conceptions. All participants in the study valued classroom defining because it helped them understand and recall definitions. However, students in only two categories showed strong acculturation to mathematical practice, which I measure by the students’ expression of meta-mathematical values for defining or by their bearing mathematical authority.  相似文献   

5.
Heinz Steinbring 《ZDM》2008,40(2):303-316
The study tries to show one line of how the German didactical tradition has evolved in response to new theoretical ideas and new—empirical—research approaches in mathematics education. First, the classical mathematical didactics, notably ‘stoffdidaktik’ as one (besides other) specific German tradition are described. The critiques raised against ‘stoffdidaktik’ concepts [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed the basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ have to play in teaching–learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example, psychological research on students’ mathematical thinking). With the interpretative empirical research on everyday mathematical teaching–learning situations (for example, the work of the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction (for instance, in the classroom) between teacher and students.  相似文献   

6.
This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the ‘differences’ in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.  相似文献   

7.
This study investigated attributes of 278 instances of student mathematical thinking during whole-class interactions that were identified as having high potential, if made the object of discussion, to foster learners’ understanding of important mathematical ideas. Attributes included the form of the thinking (e.g., question vs. declarative statement), whether the thinking was based on earlier work or generated in the moment, the accuracy of the thinking, and the type of thinking (e.g., sense-making). Findings illuminate the complexity of identifying student thinking worth building on during whole-class discussion and provide insight into important attributes of these high potential instances that could be used to help teachers more easily recognize them. Implications for researching, learning, and enacting the teaching practice of building on student mathematical thinking are discussed.  相似文献   

8.
This paper employs the commognitive frame (Sfard, 2008) to investigate how experiences with tangents across mathematical domains leave their marks on students’ subsequent work with tangents. To this aim, I introduce the notion of the discursive footprint of tangents and its characteristics by reviewing how tangents are used across mathematical domains in school textbooks. Manifestations of this footprint were sought in 182 undergraduate mathematics students’ responses to a questionnaire about tangents by labelling their responses and by identifying patterns in the endorsed narratives. Manifestations include the identification of characteristics of sole (and combination of) discourses (geometry, algebra, calculus, mathematical analysis) in student responses. Five themes emerged from the analysis: apparent replication of word use in different narratives; geometry-local hybrid discourse; endorsement of conflicting narratives; enrichment of familiar narratives with new words; and, mathematical analysis as a subsuming discourse. Finally, I discuss the potency of the discursive footprint in research and teaching.  相似文献   

9.
Authority becomes shared in mathematics classrooms when perceived sources of valid mathematical knowledge extend beyond the teacher/textbook and allow both students and disciplinary modes of reasoning to hold authority. The goal of this research is to better understand classroom situations that are intended to facilitate shared authority over proof, namely small-group episodes where students are granted authority (Gerson & Bateman, 2010) to co-construct mathematical proofs. We sought to better understand the content of undergraduate students’ attention during group proving and the sources of legitimacy for students. Using Stylianides’ (2007) definition of proof as an analytical frame, we found that student discourse focused primarily upon the mode of argumentation, followed by the mode of argument representation, and then the set of accepted statements. We identified four themes with respect to the sources of authority students relied upon in their group proving: (1) the course rubric, (2) peers’ confidence, (3) form and symbols, and (4) logical structure. Implications for research and practice are presented.  相似文献   

10.
Recent research on teachers’ use of student mathematical thinking (SMT) and recommendations for effective mathematics instruction claim that how teachers respond to SMT has great impact on student mathematical learning in the classroom. This study examined some Chinese mathematics teachers’ responses to student in-the-moment mathematical thinking that emerged during whole class discussion. The findings of this study revealed that the majority of Chinese elementary mathematics teachers in the data involved the whole group of students to make sense of in-the-moment SMT. They either invited students to digest SMT involved in the instance or provided an extension of the instance to further develop student mathematical understanding.  相似文献   

11.
in this article, we discuss findings from a research study designed to characterize students' development of significant mathematical models by examining the shifts in their thinking that occur during problem investigations. These problem investigations were designed to elicit the development of mathematical models that can be used to describe and explain the relations, patterns, and structure found in data from experienced situations. We were particularly interested in a close examination of the student interactions that appear to foster the development of such mathematical models. This classroom-based qualitative case study was conducted with precalculus students enrolled in a moderate-sized private research university. We observed several groups of 3 students each as they worked together on 5 different modeling tasks. In each task, the students were asked to create a quantitative system that could describe and explain the patterns and structures in an experienced situation and that could be used to make predictions about the situation. Our analysis of the data revealed 4 sources of mismatches that were significant in bringing about the occurrence of shifts in student thinking: conjecturing, questioning, impasses to progress, and the use of technology-based representations. The shifts in thinking in turn led to the development of mathematical models. These results suggest that students would benefit from learning environments that provide them with ample opportunity to express their ideas, ask questions, make reasoned guesses, and work with technology while engaging in problem situations that elicit the development of significant mathematical models.  相似文献   

12.
Promoting discussion and argumentation of mathematical ideas among students are aspects of the vision for communication in recent school mathematics reform efforts. Having rich mathematical discussions, however, can present a variety of classroom challenges. Many factors influence classroom discussions and need to be addressed in ways that will assist teachers in creating more inquiry-based mathematics classrooms. The study presented here examined the development of mathematical discussions in a fifth-grade classroom over the course of a school year. Various aspects of the participants' interactions, teacher's pedagogy, and the classroom microculture were investigated. One major result is the evolution of student participation from nonactive listening to active listening and use of others' ideas to develop new conjectures. These changes were paralleled by changes in the teacher's role in the classroom and the nature of her questions, in particular.  相似文献   

13.
The introduction of technology resources into mathematics classrooms promises to create opportunities for enhancing students’ learning through active engagement with mathematical ideas; however, little consideration has been given to the pedagogical implications of technology as a mediator of mathematics learning. This paper draws on data from a 3-year longitudinal study of senior secondary school classrooms to examine pedagogical issues in using technology in mathematics teaching — where “technology” includes not only computers and graphics calculators but also projection devices that allow screen output to be viewed by the whole class. We theorise and illustrate four roles for technology in relation to such teaching and learning interactions — master, servant, partner, and extension of self. Our research shows how technology can facilitate collaborative inquiry, during both small group interactions and whole class discussions where students use the computer or calculator and screen projection to share and test their mathematical understanding.  相似文献   

14.
Students often play a passive role in large-scale lectures in undergraduate mathematics courses: they observe the lecturer demonstrate mathematical procedures, but they rarely engage in authentic mathematical activity themselves. This study uses semi-structured interviews of undergraduate students to investigate the implicit and explicit social norms and expectations that influence students to maintain their passive roles during lectures. Students were aware that their passivity was influenced by social norms, but perceived these norms as necessary for allowing the lecturer to get through the content in the allotted lecture time, while enabling students to avoid being publicly embarrassed in the lecture. However, the students appreciated opportunities to work on examples in small groups during lectures. We argue that the success of small group interactions during large-scale lectures depends on students and lecturers establishing supportive social norms, and adjusting their lecture goals from ‘covering the content’ to ‘developing mathematical understanding’.  相似文献   

15.
This study examines approaches to infinity of two groups of university students with different mathematical background: undergraduate students in Liberal Arts Programmes and graduate students in a Mathematics Education Master's Programme. Our data are drawn from students’ engagement with two well-known paradoxes – Hilbert's Grand Hotel and the Ping-Pong Ball Conundrum – before, during, and after instruction. While graduate students found the resolution of Hilbert's Grand Hotel paradox unproblematic, responses of students in both groups to the Ping-Pong Ball Conundrum were surprisingly similar. Consistent with prior research, the work of participants in our study revealed that they perceive infinity as an ongoing process, rather than a completed one, and fail to notice conflicting ideas. Our contribution is in describing specific challenging features of these paradoxes that might influence students’ understanding of infinity, as well as the persuasive factors in students’ reasoning, that have not been unveiled by other means.  相似文献   

16.
In this study, we challenge the deficit perspective on mathematical knowing and learning for children labeled as LD, focusing on their struggles not as a within student attribute, but rather as within teacher-learner interactions. We present two cases of fifth-grade students labeled LD as they interacted with a researcher-teacher during two constructivist-oriented teaching experiments designed to foster a concept of unit fraction. Data analysis revealed three main types of interactions, and how they changed over time, which seemed to support the students’ learning: Assess, Cause and Effect Reflection, and Comparison/Prediction Reflection. We thus argue for an intervention in interaction that occurs in the instructional process for students with LD, which should replace attempts to “fix” ‘deficiencies’ that we claim to contribute to disabling such students.  相似文献   

17.
Promoting discussion and argumentation of mathematical ideas among students are aspects of the vision for communication in recent school mathematics reform efforts. Having rich mathematical discussions, however, can present a variety of classroom challenges. Many factors influence classroom discussions and need to be addressed in ways that will assist teachers in creating more inquiry-based mathematics classrooms. The study presented here examined the development of mathematical discussions in a fifth-grade classroom over the course of a school year. Various aspects of the participants' interactions, teacher's pedagogy, and the classroom microculture were investigated. One major result is the evolution of student participation from nonactive listening to active listening and use of others' ideas to develop new conjectures. These changes were paralleled by changes in the teacher's role in the classroom and the nature of her questions, in particular.  相似文献   

18.
The purpose of this study was to investigate how collaborative peer discussion provided cognitive support for writing laboratory reports in ninth grade general science. The discourse of three pairs of students during collaborative writing sessions was analyzed to identify the types of social interactions in which the students engaged. These interactions were examined in relation to various intellectual demands of the laboratory reports and similarities and differences between the three pairs. Five types of interactions were identified and labeled as sounding board, peer teaching, supplies answer, debate, and incorporation. In general, student pairs used the constructive interactions of sounding board, peer teaching, and incorporation when writing difficult explanation and application sections of the reports. These interactions involved the processes of elaboration, explanation, and interpretation. Debate was used less frequently than the other interaction types, overall, and was hardly ever used by female pairs in the study. The results point to a high degree of interconnection between social interaction and cognitive processing.  相似文献   

19.
In our study we examined changes in student justifications over time with an intervention that drew from the best instructional practices in the fields of special education and mathematics education. These justifications were provided by teacher-identified struggling second-grade students while engaging in symbolic numerical magnitude comparisons. Following screening, we conducted 8 instructional sessions to promote conceptual understanding of fundamental ideas for numerical magnitude. Using data collected from 71 instructional tasks, we analyzed the types of justifications students provided and how these justifications changed over time. Prior to the intervention, most student justifications involved few components of a valid mathematical justification. Over the course of the study, students provided more valid and generalizable mathematical justifications.  相似文献   

20.
This study examined student mathematical engagement through the intended and enacted lessons taught by two teachers in two different middle schools in Indonesia. The intended lesson was developed using the ELPSA learning design to promote mathematical engagement. Based on the premise that students will react to the mathematical tasks in the forms of words and actions, the analysis focused on identifying the types of mathematical engagement promoted through the intended lesson and performed by students during the lesson. Using modified Watson's analytical tool (2007), students’ engagement was captured from what the participants’ did or said mathematically. We found that teachers’ enacted practices had an influence on student mathematical engagement. The teacher who demonstrated content in explicit ways tended to limit the richness of the engagement; whereas the teacher who presented activities in an open-ended manner fostered engagement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号