首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

2.
A new triterpene saponin, 3β,16β,23α,28β,30β-pentahydroxyl-olean-11,13(18)-dien-3β-yl-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→3)]-β-d-fucopyranoside, was named Clinoposaponin D (1), together with six known triterpene saponins, buddlejasaponin IVb (2), buddlejasaponin IVa (3), buddlejasaponin IV (4), clinopodisides D (5), 11α,16β,23,28-Tetrahydroxyolean-12-en-3β-yl-[β-d-glucopyranosyl-(1→2)]-[β-d-glucopyranosyl-(1→3)]-β-d-fucopyranoside (6) and prosaikogenin A (7), and two known triterpenes, saikogenin A (8) and saikogenin F (9) were isolated from Clinopodium chinense (Benth.) O. Kuntze. Their structures were elucidated on the basis of 1D, 2D NMR and MS analysis. Meanwhile, the effects of all compounds on rabbit platelet aggregation and thrombin time (TT) were investigated in vitro. Compounds 4 and 7 had significant promoting effects on platelet aggregation with EC50 value at 53.4 and 12.2 μM, respectively. In addition, the highest concentration (200 μM) of compounds 2 and 9 shortened TT by 20.6 and 25.1%, respectively.  相似文献   

3.
A new ellagic acid derivative from Polygonum runcinatum   总被引:1,自引:0,他引:1  
A new ellagic acid derivative, 3,3′-dimethylellagic acid-4′-O-(6″-galloyl)-β-d-glucoside, named runcinatside (5), together with four known compounds 3,3′-dimethylellagic acid (1), 3,3′,4′-trimethylellagic acid (2), 3,3′-dimethylellagic acid-4′-O-β-d-glucoside (3) and 3-methylellagic acid-4′-O-α-l-rhamno-pyranoside (4), was isolated from the roots of Polygonum runcinatum Buch.-Ham. ex D.Don Var. sinense Hemsl and the structures of these compounds were established by spectroscopic methods and comparison with previously reported data. All compounds showed antioxidant activities in vitro and compound 5 possessed the highest activity.  相似文献   

4.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

5.
The disaccharide methyl (4-O-benzoyl-3-O-benzyl-2-O-acetyl-α-L-rhamno pyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (13) was obtained in an excellent yield of 88% using methyl (allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate ((12) as the glycosyl acceptor and a slight excess of the 1,2-di-O-acetyl-rhamnoglycosyl donor 5a. Disaccharide 13 is a key intermediate that can be used either as a glycosyl acceptor or glycosyl donor for the preparation of rhamnogalacturonan fragments. Here, introduction of the trichloroacetimidate function at the anomeric center gave the disaccharide glycosyl donor 28, which could be applied in a blockwise glycosylation reaction to form the L-Rha-α(1→4)-D-GalA-α(1→4)-D-GalA trisaccharide 29. Generally, on condition that no neighboring group effect influenced the reaction at the anomeric center of the α-trichloroacetimidate galacturonate glycosyl donors (20–22, 28), α-glycosidic linkages were nearly exclusively formed, except in the case of the 4-O-methylgalactopyranosyluronate 22.  相似文献   

6.
Abstract

The primary structure of an elicitor-active oligosaccharide, LN-3, prepared from partially hydrolyzed algal laminaran was determined by means of the analyses of glycosyl-linkage, fragments by acetolysis, and glycosyl-sequence. The elicitor-active oligosaccharide, LN-3, is a pyridylaminated hepta-β-d-glucoside which was shown to have the following linear structure: β-d-Glcp(1→6)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→6)-β-d-Glcp(1→3)-Glc-PA.  相似文献   

7.
Four steroid saponins (25) and three derivatives (68) were synthesised from laxogenin. Four of them were new compounds: (25R)-3β-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyloxy)-5α-spirostan-6-one (3), (25R)-3β-(β-d-galactopyranosyloxy)-5α-spirostan-6-one (5), 3β,16-diacetyl-26-hydroxy-5α-cholestan-6,22-dione (6) and 16-acetyl-3β,26-dihydroxy-5α-cholestan-6,22-dione (7). All the compounds showed plant growth-promoting activity in the radish hypocotyl elongation and cotyledon expansion bioassay. Above all, 2 and 6 were found to be more active.  相似文献   

8.
A tetrasaccharide, α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose (1), the repeating unit of the cell-wall mannans of Microsporum gypseum and related species of Trychophyton, was synthesized using 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (5) and 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (13) as the glycosyl donors in “the inverse Schmidt” procedure.  相似文献   

9.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

10.
A new triterpenoid glycoside (1) was isolated from the methanol extract of the leaves and stems of Duranta repens L. (Verbenaceae) along with 14 known compounds consisting of eight triterpenoids, four iridoids, one phenylethanoid glycoside and one flavonoid. The chemical structure of 1 was determined to be bayogenin 3-O-[β-D-glucopyranoside]-28-O-[α-L-rhamnopyranosyl-(1→5)-O-β-D-apiofuranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranosyl] ester, based on spectroscopic data. In addition, the inhibitory effects of the isolates on lipoxygenase activity were examined. Among them, acteoside and apigenin resulted in 94 ± 3.6% and 82 ± 4.7% inhibition, respectively, at 0.5 mM.  相似文献   

11.
A new caffeoylgluconic acid derivative, trans-caffeoyl-6-O-d-gluconic acid methyl ester (1), together with two known compounds named trans-caffeoyl-6-O-d-glucono-γ-lactone (2) and trans-caffeoyl-6-O-d-gluconic acid (3), was isolated from the nearly ripe fruits of Evodia rutaecarpa (Juss.) Benth.. These compounds were isolated by various separation methods associated with the UPLC-Q-TOF-MS technique. Their structures were elucidated on the basis of extensive spectroscopic methods.  相似文献   

12.
A variety of sialyl-α-(2→3)-neolactotetraose (IV3NeuAcnLcOse4 or IV3NeuGcnLcOse4) derivatives (23, 31–37, 58–60) modified at C-2 of the GlcNAc residue have been synthesized. The phthalimido group at C-2 of GlcNAc in 2-(trimethylsilyl)ethyl (3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) was systematically converted to a series of acylamino groups, to give the per-O-benzylated trisaccharide acceptors (6–11). On the other hand, modification of the hydroxyl group at C-2 of the terminal Glc residue in 2-(trimethylsilyl)ethyl (4,6-O-benzylidene-β-d-glucopyranosyl)-(1→3)-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (42) gave three different kinds of trisaccharide acceptors containing D-glucose (49), N-acetyl-d-mannosamine (50), and D-mannose (51) instead of the GlcNAc residue. Totally ten trisaccharide acceptors (5–11 and 49–51) were each coupled with sialyl-α-(2→3)-galactose donor 12 to afford the corresponding pentasaccharides (14–21 and 52–54) in good yields, respectively, which were then transformed into the target compounds. Acceptor specificity of the synthetic sialyl-α-(2→3)-neolactotetraose probes for the human α-(1→3)-fucosyltransferases, Fuc-TVII and Fuc-TVI, was examined.  相似文献   

13.
Abstract

Reaction of 2,3:4,5-di-O-isopropylidene-β-d-arabino--hexos-2-ulo-2,6-pyranose (1) with (methoxycarbonylmethylene)triphenylphosphorane in either dichloromethane or methanol gave methyl (E)-2,3-dideoxy-4,5:6,7-di-O-isopropylidene-β-d-arabino-oct-2-ene-4-ulo-4,8-pyranosonate (2) or a 1:2.3 mixture of 2 and its Z-isomer (3), respectively. Bishydroxylation of 2 with osmium tetraoxide gave a mixture of methyl 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (4) and -d-glycero-d-ido-oct-4-ulo-4,8-pyranosonate (5) which were carefully resolved by column chromatography. Compound 4 was transformed into its 2,3-di-O-methyl derivative (6) which was deacetonated to 7 and subsequently degraded to dimethyl 2,3-di-O-methyl-(+)-L-tartrate (8). On the other hand, acetonation of a mixture of 4 and 5 gave the corresponding tri-O-isopropylidene derivatives (9) and (10). Compounds 4 and 5 were reduced with LiAlH4 to the related 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (11) and β-d-glycero-d-ido-oct-4-ulo-4,8-pyranose (12). Treatment of 11 and 12 with acetone/PTSA/CuSO4 only produced the acetonation at the C-2,3 positions. Finally, compounds 11 and 12 were deacetonated to the corresponding D-glycero-d-galacto- (15) and D-glycero-d-ido-oct.-4-ulose (16).  相似文献   

14.
The synthesis of a number of C-4 and C-9 substituted derivatives of KDN2en methyl ester 2 is reported. 9-Deoxy-9-iodo, 9-azido-9-deoxy and 9-O-methyl derivatives of 2(compounds 5, 7and 9) were prepared from the corresponding 9-O-tosylate, methyl 2,6-anhydro-3-deoxy-9-O-p-toluenesulfonyl-D-glycero-D-galacto-non-2-enonate (3). These compounds have been fully characterised as the peracetates 6, 8 and 10. Treatment of 3 with KSAc gave the 9-thioacetyl derivative which was isolated as the peracetate 11. 4-C-Ethenyl-4-deoxy (14), 4-C-phenyl-4-deoxy (15) and 4-C-[1-(methoxycarbonyl)ethenyl]-4-deoxy (16) derivatives of 2were prepared via the palladium-catalysed coupling of the 4-epi-chloride, methyl 5,7,8,9-tetra-O-acetyl-2,6-anhydro-4-chloro-3,4-dideoxy-D-glycero-D-talo-non-2-enonate (12) with the appropriate organostannanes.  相似文献   

15.
Abstract

Upon sodium cyanoborohydride reduction followed by de-O-silylation, the O-methyloxime and N-benzylnitrone of 5′-TBDMS-3′-ketothymidine gave resolvable epimeric mixtures of 1-[2,3-dideoxy-3-(N-methoxyamino)-β-d-threo-and β-d-erythro-pentofuranosyl]thymine and 1-[3-(N-benzyl-N-hydroxyamino)-2,3-dideoxy-β-d-threo- and β-d-erythro-pentofuranosyl]thymine respectively. These compounds were inactive against HIV. On the other hand, 1-[2,3-dideoxy-3-(N-hydroxyamino)-5-O-TBDMS-β-d-threo-pentofuranosyl]thymine, upon treatment with acetone, then de-O-silylation, gave the bicyclonucleoside analogue 15, slightly more active against HIV in vitro than DDI.  相似文献   

16.
A new flavonoid, dhasingreoside (1) and seven known compounds, quercetin 3-O-β-d-galacturonopyranoside (2), quercetin 3-O-β-d-galactopyranoside (3), quercetin 3-O-β-d-glucuronopyranoside (4), quercetin 3-O-α-l-rhamnopyranoside (5), (–)-epicatechin (6), salicylic acid (7) and gaultherin (8), have been isolated from the shade-dried stems and leaves of Gaultheria fragrantissima, commonly known as ‘Dhasingre’ in Nepal. The structures were elucidated on the basis of physical, chemical and spectroscopic methods. Among known compounds, five compounds (36 and 8) were isolated for the first time from G. fragrantissima. In vitro antioxidant activity of all the isolated compounds was evaluated by 1,1-diphenyl-2-picrylhydrazyl free radical-scavenging assay. Dhasingreoside (1) and other compounds (26) showed significant free radical-scavenging activity.  相似文献   

17.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

18.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

19.
A novel flavonol triglycoside (4), isorhamnetin-3-O-β-d-glucopyranosyl (1→2)-α-l-rhamnopyranosyl (1→6)-β-d-glucopyranoside, named elwesoside A, together with six known flavonols (13, 57) was isolated from Anoectochilus elwesii (Clarke ex Hook. f.) King et Pantl. and its structure was elucidated by extensive spectroscopic methods and comparison with the literature data. All compounds were first reported in this plant and two of them (4 and 5) were the first examples of flavonol triglycosides isolated from Anoectochilus genus. The effects of 17 were evaluated on insulin-treated human HepG2 cells under high glucose conditions for stimulating glucose uptake activities. The novel compound (4) displayed highly potent dose-dependent effect on the stimulation of glucose uptake in insulin-resistant human HepG2 cells.  相似文献   

20.
Six non-anomeric isourea derivatives of d-fructose (7, 8), d-glucose (9, 10), 6-deoxy-l-altrose (11) and l-rhamnose (12) were synthesized from the precursors 16 by a CuCl-catalyzed addition of a non-glycosidic OH-group to DCC and DIPC, respectively. Subsequently, the isoureido group of phenyl 2,3,4-tri-O-benzyl-6-O-(N,N′-dicyclohexylisoureido)-β-d-glucopyranoside (10) was replaced by an azido and a thioacetyl group, respectively, yielding the corresponding 6-deoxy-6-azido-d-glucopyranoside (13) and 6-deoxy-6-thioacetyl-d-glucopyranoside (14) in moderate to good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号