首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

2.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

3.
Two tetrameric arabinogalactans, β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-[α-L-arabinofuranosyl-(1→3)]-D-galactopyranose (14) and α-L-arabinofuranosyl-(1→3)-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-D-galactopyranose (25), which are good candidates for CCRC-M7 epitope characterization, were synthesized efficiently using a convergent strategy. Migration of an acceptor acetyl group proved to be an obstacle to synthesis, but regioselective glycosylation or 4-O-benzyl protection of the acceptor circumvented this problem allowing efficient synthesis of the 1→6 linked target compounds.  相似文献   

4.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

5.
The disaccharides 2-O-Me-α-L-Fucp-(1→2)-β-D-Galp-(1→OAllyl) 12, α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 15, and 2-O-Me-α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 18 have been synthesized. Glycosylation reactions were performed using ethyl 1-thiofucopyranosides as glycosyl donors and N-iodosuccinimide-triflic acid as the activating agent. The O-methylated disaccharides correspond to highly immunogenic O-glycan antigens occurring at the surface of Toxocara canis and Toxocara cati larvae.  相似文献   

6.
A tetrasaccharide, α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose (1), the repeating unit of the cell-wall mannans of Microsporum gypseum and related species of Trychophyton, was synthesized using 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (5) and 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (13) as the glycosyl donors in “the inverse Schmidt” procedure.  相似文献   

7.
Two new flavonol glycosides, brachysides C and D, together with three known flavonol glycosides, were isolated from the leaves of Caragana brachyantha. The structures of brachysides C and D were elucidated on the basis of detailed spectroscopic analysis as quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside] and quercetin 5-O-[α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside]-7-O-[α-l-rhamnopyranoside]-4′-O-[α-l-rhamnopyranoside], respectively. The presence of flavonol tetra- and triglycosides bearing a sugar moiety at position 5 was the first report from this genus Caragana.  相似文献   

8.
The reversed-phased HPLC analysis of the methanol extract of the pericarp of C. taliera Roxb. (Talipalm), a rare species of Arecaceae family, afforded a new steroidal glycoside, β-sitosterol-3-O-α-l-rhamnopyranosyl-(1→4)-β-d-xylopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (1). The structure of the compound was elucidated unequivocally by UV, IR, HR-ESI-MS, 1H and 13C NMR spectroscopic studies.  相似文献   

9.
The disaccharide methyl (4-O-benzoyl-3-O-benzyl-2-O-acetyl-α-L-rhamno pyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (13) was obtained in an excellent yield of 88% using methyl (allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate ((12) as the glycosyl acceptor and a slight excess of the 1,2-di-O-acetyl-rhamnoglycosyl donor 5a. Disaccharide 13 is a key intermediate that can be used either as a glycosyl acceptor or glycosyl donor for the preparation of rhamnogalacturonan fragments. Here, introduction of the trichloroacetimidate function at the anomeric center gave the disaccharide glycosyl donor 28, which could be applied in a blockwise glycosylation reaction to form the L-Rha-α(1→4)-D-GalA-α(1→4)-D-GalA trisaccharide 29. Generally, on condition that no neighboring group effect influenced the reaction at the anomeric center of the α-trichloroacetimidate galacturonate glycosyl donors (20–22, 28), α-glycosidic linkages were nearly exclusively formed, except in the case of the 4-O-methylgalactopyranosyluronate 22.  相似文献   

10.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

11.
A xylosylated rhamnose pentasaccharide, α- l-Rha p-(1→3)-[β- l-Xyl p-(1→2)-] [β- l-Xyl p-(1→4)-]α- l-Rha p-(1→3)- l-Rha p, the repeating unit of the O-specific side chain of the lipopolysaccharides from the reference strains for Stenotrophomonas maltophilia serogroup O18, was synthesized by a highly regio- and stereoselective procedure. Thus coupling of methyl rhamnopyranoside (9) with 2,3,4-tri- O-acetyl-α- l-rhamnopyranosyl trichloroacetimidate (8) gave the (1→3)-linked disaccharide (10), and subsequent benzoylation and deacetylation afforded the disaccharide acceptor 12. Condensation of 12 with 8 yielded methyl 2,3,4-tri- O-acetyl-α- l-rhamnopyranosyl-(1→3)-α- l-rhamnopyranosyl-(1→3)-2,4-di- O-benzoyl-α- l-rhamnopyranoside (13). Coupling of 13 with 2,3,4-tri- O-benzoyl-α- l-xylopyranosyl trichloroacetimidate (4) followed by deprotection gave the target pentasaccharide (15).  相似文献   

12.
Isolation of flavonoids from the aerial parts of Taverniera aegyptiaca Bioss. (Fabaceae) led to identification of one new flavonol glycoside, isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (1), along with eleven compounds, which previously have not been isolated from this plant quercetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (2), isorhamnetin-3-O-α-l-arabinopyranoside (3), quercetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (4), isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (7), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (8), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside] (9), kaempferol 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (10), isorhamnetin (11), 4,4′-dihydroxy-2′-methoxychalcone (12), formononetin (13) and calycosin (15)] and some compounds already known from this plant [quercetin-3-O-robinobioside (5), isorhamnetin-3-O-robinobioside (6), afrormosin (14) and odoratin (16)].  相似文献   

13.
The terminal disaccharide of the O-antigenic polysaccharide of Vibrio cholerae O37, 4-O-methyl-α-D-QuiNAc-(1→4)-α-d-QuiNAc, was synthesized as methyl glycoside involving glycosylation between glycosyl donor ethyl 2-azido-3-O-benzyl-2,6-dideoxy-4-O-methyl-6-iodo-1-thio-α-d-glucopyranoside and glycosyl acceptor methyl 2-azido-3-O-benzyl-2,6-dideoxy-6-iodo-α-d-glucopyranoside. Dehalogenation, global deprotection, and reduction of the azide to amine were effected in one step by catalytic hydrogenation. It was followed by selective N-acetylation to give the desired deprotected disaccharide.  相似文献   

14.
Fuzhuan brick-tea (FBT) is unique for a fungal fermentation stage in its manufacture process and is classified in dark tea. A new acylated flavonol glycoside, kaempferol 3-O-[E-p-coumaroyl-(→2)][α-l-arabinopyranosyl-(1→3)][α-l-rhamnopyranosyl(1→6)]-β-d-glucopyranoside, which was trivially named as camellikaempferoside A (1), was isolated from FBT along with camelliquercetiside C (2). Their structures were unambiguously elucidated by combination of spectroscopic and chemical methods. Compound 1 showed anti-proliferative activity against MCF-7 and MDA–MB-231 cells with IC50 values of 7.83 and 19.16 μM, respectively.  相似文献   

15.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

16.
Treatment of 2-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)ethanal (1a) and 2-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)ethanal (1b) respectively with malononitrile in the presence of silica gel provided the corresponding 4-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-cyanocrotononitriles (2a) and (2b). Starting from 2a and 2b, respectively, cyclizations with sulfur and triethylamine yielded 5-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-aminothiophene-3-carbonitriles (3a) and (3b). Further cyclizations could be achieved by utilizing of triethyl orthoformate/ammonia to furnish the 6-(α-D-glycopyranosyl)thieno[2,3-d]pyrimidine-4-amines 4a and 4b.  相似文献   

17.
Retrospinoside (1) is a new polyoxy pregnane glycoside which was isolated and characterised from the aerial parts of Caralluma retrospiciens (Ehrenb.) N. E. Br., family Apocynaceae. The structure was established as 3-O-[β-D-glucopyranosyl-(1 → 4)-β-D-(3-O-methyl-6-desoxygalactopyranosy)]-14,15,20-trihydroxy-4β-pregnane. Its structural elucidation was performed through extensive spectroscopic measurements including 1D- and 2D-NMR, and HRMS, in addition to chemical methods.  相似文献   

18.
A pentasaccharide, the major repeating unit of the lipopolysaccharide (LPS) of the nitrogen fixing bacterium Acetobacter diazotrophicus PAL 5 was efficiently synthesized as its allyl glycoside using a regio- and stereo-selective strategy. The key acceptor, allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside (3), was prepared by selective 3-O-acetylation of allyl 4-O-benzoyl-α-l-rhamnopyranoside. Condensation of 3 with 2,3,4,6-tetra-O-benzoyl-α-d-glucopyranosyl trichloroacetimidate furnished the disaccharide 5. Deallylation and subsequent trichloroacetimidation of 5 afforded 2,3,4,6-tetra-O-benzoyl-β-d-glucopyranosyl-(1→2)-3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (10). Selective 3-O-glycosylation of allyl α-l-rhamnopyranoside (1) with 10 followed by benzoylation gave trisaccharide (12), which could be conveniently converted to a donor (14). Condensation of 14 with allyl 3,4-di-O-benzoyl-α-l-rhamnopyranoside (15) gave tetrasaccharide 16. Selective deacetylation of 16 gave the acceptor 17 which was ribosylated to furnish the protected pentasaccharide, and finally deprotection led to the title compound.  相似文献   

19.
Alcea rosea L. is widely cultivated in gardens of Egypt as an ornamental plant and it has a great history of folkloric medicinal uses. In the present work, phytochemical investigation of the alcoholic extract of the flowers of A. rosea L. led to the isolation of six flavonoids (16). Dihydrokaempferol-4′-O-β-d-glucopyranoside (1), dihydrokaempferol (2), kaempferol-3-O-[6″-(E-coumaroyl)]-β-d-glucopyranoside (3), kaempferol-3-O-β-d-glucopyranoside (4), Apigenin (5) and kaempferol-3-O-α-l-rhamnopyranosyl-(1′″→6″)-β-d-glucopyranoside (6). Four of the isolated compounds were evaluated for their antioxidant, immunostimulant and cytotoxic activities against HepG-2 cell line. Compound (3) showed potent cytotoxic activity against HepG-2 cell line with high selectivity towards hepatocellular carcinoma in vitro (with IC50 = 3.8 μg/mL). Compounds 1 and 2 exhibited significant antioxidant activity and compound 4 showed a significant immune stimulant activity. Compound 1 is isolated for the first time from genus Alcea and this is the first report for its biological investigation.  相似文献   

20.
Abstract

α-Stereocontrolled, glycoside synthesis of trimeric sialic acid is described toward a systematic approach to the synthesis of sialoglycoconjugates containing an α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid unit α-glycosidically linked to O-3 of a galactose residue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-d-galactopyranoside (4) or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (5), with methyl [phenyl 5-acetamido-8-O-[5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1”, 9′-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′, 9-lactone]-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α-glycosides 6 and 8, respectively. The glycosyl donor 3 was prepared from trimeric sialic acid by treatment with Amberlite IR-120 (H+) resin in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compounds 6 and 8 were converted into the per-O-acyl derivatives 7 and 9, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号