首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This paper presents a computational algorithm that exploits inherent parallelism in the modified recursive formulation presented in Part I of the paper. Computational data flows to implement the algorithm are defined. By combining the topological analysis method presented in Part 1 of the paper, an efficient general purpose dynamic simulation algorithm is developed. Examples using the code developed show that real-time simulation can be achieved for moderately complex mechanical systems using a shared memory multiprocessor.  相似文献   

2.
ABSTRACT

The side-wind loading on a simplified train model at scale 1:25 is investigated by parallel large eddy simulation (LES) with incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-type lattice Boltzmann method (LBM) implemented in our own AMROC framework. It is found that the new LBM code provides more accurate time-averaged force predictions, while compute times are reduced.  相似文献   

3.
An efficient solution strategy for the simulation of incompressible fluids needs adequate and accurate space and time discretization schemes. In this paper, for the space discretization, we use an inf–sup stable finite element method and for the time discretization, Radau‐IIA methods of higher order, which have the advantage that the pressure component has convergence order s in time, where s is the number of internal stages. The disadvantage of this approach is that we have a high computational amount of work, because large nonlinear systems of equations have to solved. In this paper, we use a transformation of the coefficient matrix and the simplified Newton method. This approach has the effect that our large nonlinear systems split into smaller ones, which can now also be solved in parallel. For the parallelization of the code we use the software component technology and the Component Template Library. Numerical examples show that high order in the pressure component can be achieved and that the proposed solution technique is very effective. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A stabilized finite element (B, q) formulation is developed to solve the kinematic dynamo problem. As a test case, we solve the induction equation for a given solid body helical flow, embedded in a cylindrical conducting shell. This problem corresponds to the well-known Ponomarenko dynamo. It has the interesting property to have an exact dispersion relation giving the magnetic growth rate as a function of the flow properties. Therefore, it is a good benchmark to test our kinematic dynamo code. We calculated the dynamo threshold and plotted the geometry of the generated magnetic field. We also evaluated the residual error due to our stabilized formulation.  相似文献   

5.
This paper deals with the modelling and numerical simulation of isothermal bubbly flows with multi-size bubbles. The study of isothermal bubbly flows without phase change is a first step towards the more general study of boiling bubbly flows. Here, we are interested in taking into account the features of such isothermal flow associated to the multiple sizes of the different bubbles simultaneously present inside the flow. With this aim, several approaches have been developed. In this paper, two of these approaches are described and their results are compared to experimental data, as well as to those of an older approach assuming a single average size of bubbles. These two approaches are (i) the moment density approach for which two different expressions for the bubble diameter distribution function are proposed and (ii) the multi-field approach. All the models are implemented into the NEPTUNE_CFD code and are compared to a test performed on the MTLOOP facility. These comparisons show their respective merits and shortcomings in their available state of development.  相似文献   

6.
B.B. Lewis 《Shock Waves》1997,7(3):147-150
The Piezo-electric Gage Analysis System U.S. (pegasus) couples a two-dimensional dynamic structural finite element code to a two-dimensional electrostatics code for analysis of piezoelectric gages. The method has a sound theoretical basis and is built around two powerful finite element anlysis codes. The analysis codes provide the solution of the time dependent stress state in the gage and the solution of the electrostatic equation for each time step. pegasus provides the link between the two codes and the steps required to carry the analysis through to prediction of gage currents. Post-processing of the results allows visual interpretation of the the electric fields within the gage. Here we briefly describe the code and show that it can be a valuable tool for understanding the nature of piezoelectric gages. Received 6 May 1996 / Accepted 31 October 1996  相似文献   

7.
We consider the chemical reaction in a turbulent flow for the case that the time scale of turbulence and the time scale of the reaction are comparable. This process is complicated by the fact that the reaction takes place intermittently at those locations where the species are adequately mixed. This is known as spatial segregation. Several turbulence models have been proposed to take the effect of spatial segregation into account. Examples are the probability density function (PDF) and the conditional moment closure (CMC) models. The main advantage of these models is that they are able to parameterize the effects of turbulent mixing on the chemical reaction rate. As a price several new unknown terms appear in these models for which closure hypothesis must be supplied. Examples are the conditional dissipation 〈 χ ∣ φ 〉, the conditional diffusion 〈 κ ∇2 φ ∣ u, φ 〉 and the conditional velocity 〈 u ∣ φ 〉. In the present study we investigate these unknown terms that appear in the PDF and CMC model by means of a direct numerical simulation (DNS) of a fully developed turbulent flow in a channel geometry. We present the results of two simulations in which a scalar is released from a continuous line source. In the first we consider turbulent mixing without chemical reaction and in the second we add a binary reaction. The results of our simulations agree very well with experimental data for the quantities on which information is available. Several closure hypotheses that have been proposed in the literature, are considered and validated with help of our simulation results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Abstract

This paper presents an approach for modeling concrete pavement, based on the constitutive implementation of Bazant's microplane theory, for the purpose of predicting pavement response due to complex loading by vehicles. This includes implementation of the microplane theory in a three dimensional finite element code and verification of its numerical accuracy. The analytical method is then verified. The program's accuracy under simple static loading is verified by comparison with two of the most widely used pavement design codes. Experimental data from the literature are used to verify the approach developed for both cyclic response and prediction of material softening, a critical feature of the Portland Cement Concrete (PCC) concrete material used in pavement. The analysis is also verified against experimental influence function data for a single axle, Finally, the analytically predicted pavement response is verified for dynamic multi-axle truck loading. Based on agreement with experimental data, the model developed captures the essential characteristics of concrete pavement subjected to complex  相似文献   

9.
ABSTRACT

The purpose of this paper is the identification of a reduced order model (ROM) from numerical code output by non-intrusive techniques (i.e. not requiring projecting of the governing equations onto the reduced basis modes). In this paper, we perform a comparison between two methods of model order reduction based on dynamic mode decomposition (DMD). The first method is a deterministic (classic) DMD technique endowed with a dynamic filtering criterion of selection of modes used in the ROM model. The second method is an adaptive randomised DMD algorithm (ARDMD) based on a randomised singular value decomposition. This produced an accelerating algorithm, which is endowed with a few additional advantages. In addition, the reduced order model is guaranteed to satisfy the boundary conditions of the full model, which is crucial for surrogate modelling. For numerical illustration, we use the shallow water equations model.  相似文献   

10.
Shi  Z. C.  Shang  Y.  Zhang  X. F.  Wang  G. 《Experimental Mechanics》2021,61(8):1237-1247
Background

Camera calibration is an essential step for the optical measurement method used in the experimental mechanics. Most plumb line methods focus on solving lens distortions without considering camera intrinsic and extrinsic parameters.

Objective

In this paper, we propose a full camera calibration method to estimate the camera parameters, including camera intrinsic parameters, extrinsic parameters and lens distortion parameters, from a single image with six or more non-coplanar lines.

Methods

We parameterize the 3D lines with the intersection of two planes that allow the direct linear transformation of the lines(DLT-Lines). Based on the DLT-Lines, the projection matrix is estimated linearly, and then the camera intrinsic and extrinsic parameters are extracted from the matrix. The relationship between the distorted 2D lines and the distortion coefficients is derived, based on which the distortion coefficients can be solved linearly. In the last step, a non-linear optimization algorithm is used to jointly refine all the camera parameters, including the distortion coefficients.

Results

Both synthetic and real data are used to evaluate the performance of our method, which demonstrates that the proposed method can calibrate the cameras with radial and tangential distortions accurately.

Conclusions

We propose a DLT-lines based camera calibration method for experimental mechanics. The proposed method can calibrate all the camera parameters from a single image.

  相似文献   

11.
A spectral code has been used to simulate a developing turbulent boundary layer at low Reynolds number Reθ (based on free stream velocity and momentum thickness) between 353 and 576. The starting field was generated by allowing a step change of temperature to diffuse outwards from one wall in a fully developed channel flow. The thermal boundary layer so created was conditionally sampled to convert it into a momentum boundary layer with an irrotational free stream region, a process which is justified by appeal to experiments. This initial field was allowed to develop until the momentum boundary layer thickness δ995 had grown to about 1·5 times its original thickness. The results of the simulation have been compared with a wide range of experimental data. The outcome of this comparison is generally very satisfactory; the main trends of the experiments are well reproduced and our simulation supplements and extends the existing sets of experimental data. The simulation also gives pressure statistics which cannot be obtained experimentally. In particular, it gives the contribution of pressure diffusion to the balance equations for the Reynolds stress and indicates the error produced by omitting this term.  相似文献   

12.
The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 107 s−1 has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model’s implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the α-to-ε phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.  相似文献   

13.
Abstract. This paper presents a set of test cases in high speed aerodynamics that describe our perceived relationship between experiment and computation. Computational fluid dynamics, with sensible interpretation, can guide experimental design, so that wind tunnel studies can focus better on fundamental ‘benchmark’ studies. Likewise experimental data may be used as feed back to evaluate codes and to improve their physical modelling. Here we present several test cases, developed in our laboratory, that we regard as basic ‘building blocks’ for high speed aerodynamics. These include: design for boundary-layer/pressure-gradient interaction; cavity flows; shock-wave/boundary-layer interactions; techniques for a graduated and controlled study of three-dimensional separated flows. Received 10 October 2001/ Accepted 19 November 2002 Published online 4 February 2003 Correspondence to: R. Hillier (r.hillier@ic.ac.uk) An abridged version of this paper was presented at the 23rd Int. Symposium on Shock Waves at Fort Worth, Texas, from July 22 to 27, 2001  相似文献   

14.
ABSTRACT

A crucial property of any measure of structural reliability should be comparativeness. With this point in mind this paper discusses some well-known versions of so-called reliability indices. Such reliability indices, defined by use of second moment information, have been used for the last decade, specifically within safety code committee work. This paper defines a generalized second moment reliability index that satisfies some few fundamental canonical rules and principles of simplicity. The reliability index is specifically defined to be used when no high quality information is available to the engineer other than the limit state surface and a second moment representation for the set of basic variables of the structural problem. In a parallel paper the author demonstrates the practical operability of this reliability index even for multimode failure systems.  相似文献   

15.
This research originally was aimed at modeling all flows (except free-molecular) by systems of hyperbolic-relaxation equations (moments of the Boltzmann equation), and developing efficient numerical methods for these. Such systems have many potential numerical advantages, mainly because there are no second or higher derivatives to be approximated. This avoids accuracy problems on adaptive unstructured grids, and the source terms, though often stiff, are only local; the compact stencils facilitate code parallelization. A single code could simulate flows up to intermediate Knudsen numbers, and be hybridized with DSMC where needed. In this project, one major problem arose that we have not yet solved: the accurate representation of shock structures. This makes the methodology currently unsuited for, e.g., re-entry flows. We have validated it for subsonic and transonic flows and are concentrating on applications to MEMS-related flows. We discuss the challenges of our approach, present numerical algorithms and results based on the 10-moment model, and report progress in our latest research topic: formulating accurate solid-boundary conditions.  相似文献   

16.
In this contribution we present results on opacity and radiative power losses in laser-produced plasmas. We focus our attention on the inner shell transition array 1s–2p in an aluminum plasma. At high densities, electron, Doppler and ion Stark broadening play a role in line merging. This is why the PPP line-shape code developed at Université de Provence was adapted to calculate opacity and radiative power losses in Al and Ge ions. Atomic physics data required in PPP calculations is provided by an MCDF code. Comparison with experiments is discussed.  相似文献   

17.
We have performed high-energy-density physics experiments with large radiative fluxes, relevant to radiative shocks in our universe. These experiments were performed at the Omega Laser facility and used a laser irradiance of 7.2 × 1014 W cm?2 to launch a Be disk into low-density Xe gas. The radiative shocks were observed early in time as the dense shocked Xe layer began to form. The average shock position indicates that the shock is moving over 130 km s?1. Data are compared to simulation output from the CRASH code, which was developed at the Center for Radiative Shock Hydrodynamics at the University of Michigan.  相似文献   

18.
In a finite deformation at a particle of a continuous body, a triad of infinitesimal material line elements is said to be “unsheared” when the angles between the three pairs of line elements of the triad suffer no change. In a previous paper, it has been shown that there is an infinity of unsheared oblique triads. With each oblique unsheared triad may be associated an “extended polar decomposition” F = QG = HQ of the deformation gradient F, in which Q is a rotation tensor, and G, H are not symmetric. Both G and H have the same real eigenvalues which are the stretches of the elements of the triad. In this paper, a detailed analysis of extended polar decompositions is presented in the case when the finite deformation is that of plane strain. Then, we may deal with a 2 × 2 deformation gradient F′ = QG′ = HQ′ instead of the full 3 × 3 tensor F. In this case, the extended polar decompositions are associated with “unsheared pairs,” i.e., pairs of infinitesimal material line elements in the plane of strain which suffer no change in angle in the deformation. If one arm of an unsheared pair is chosen in the plane of strain, then, in general, its companion in the plane is determined. It follows that all possible extended polar decompositions may then be described in terms of a single parameter, the angle that the chosen arm makes with a coordinate axis in the plane. Explicit expressions for G′ and H′ are obtained, and various special cases are discussed. In particular, we note that the expressions for G′ and H′ remain valid even when the chosen arm is along a “limiting direction,” that is the direction of a line element which has no companion element in the plane forming an unsheared pair with it. The results are illustrated by considering the cases of simple shear and of pure shear.Dedicated to Professor Piero Villaggio as a symbol of our friendship and esteem.  相似文献   

19.
The aim of this research work is to perform high quality direct numerical simulations (DNS) of a simplified single phase pressurized thermal shock (PTS) scenario with and without buoyancy effects. In that context, the objectives of this paper are (i) to present the road towards the DNS of a PTS design without buoyancy effects and (ii) to demonstrate that the code NEK5000 is adequate for true DNS analyses. This DNS of the PTS design will serve as a reference to validate low order CFD approaches. The higher order spectral element code NEK5000 is selected to perform the high quality DNS computations. The capabilities of this code, in order to perform the DNS for PTS like geometries, have been extensively assessed for a well-known turbulent channel flow configuration with Reτ =?180 (turbulent Reynolds number based on the wall friction velocity). Different numerical parameters of NEK5000 have been thoroughly tested and their influence has been studied to obtain high quality turbulence statistics. This assessment of NEK5000 is further extended for the application of highly skewed hexahedral (non-orthogonal) meshes in a turbulent channel flow. The obtained results have shown that NEK5000 is capable of producing high quality DNS solution for a PTS like complex flow configuration for skewed elements (meshes) up to 60 degrees. Finally, this tested numerical framework is adopted to perform the targeted DNS computations of the simplified PTS design.  相似文献   

20.
This paper concerns the regularity of a capillary graph (the meniscus profile of liquid in a cylindrical tube) over a corner domain of angle α. By giving an explicit construction of minimal surface solutions previously shown to exist (Indiana Univ. Math. J. 50 (2001), no. 1, 411–441) we clarify two outstanding questions. Solutions are constructed in the case α = π/2 for contact angle data (γ1, γ2) = (γ, π − γ) with 0 < γ < π. The solutions given with |γ − π/2| < π/4 are the first known solutions that are not C2 up to the corner. This shows that the best known regularity (C1, ∈) is the best possible in some cases. Specific dependence of the H?lder exponent on the contact angle for our examples is given. Solutions with γ = π/4 have continuous, but horizontal, normal vector at the corners in accordance with results of Tam (Pacific J. Math. 124 (1986), 469–482). It is shown that our examples are C0, β up to and including the corner for any β < 1. Solutions with |γ − π/2| > π/4 have a jump discontinuity at the corner. This kind of behavior was suggested by numerical work of Concus and Finn (Microgravity sci. technol. VII/2 (1994), 152–155) and Mittelmann and Zhu (Microgravity sci. technol. IX/1 (1996), 22–27). Our explicit construction, however, allows us to investigate the solutions quantitatively. For example, the trace of these solutions, excluding the jump discontinuity, is C2/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号