首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A colorimetric and fluorescent chemosensor (chemosensor 2) for the detection of cyanide anions in aqueous solution has been designed and synthesized in high yield. The sensing mechanism of the chemosensor was verified via UV–vis, fluorimetric, and NMR titrations, and was theoretically explained using DFT and TD-DFT calculations. The chemosensor could optically discriminate the presence of fluoride ions over other anions by a color change from yellow to red with an enhancement of pink fluorescence in DMSO. However, it showed strong green fluorescence when CN? was added to a mixture of DMSO/water (6:4 v/v). Thus, the chemosensor can be employed in selective detecting of CN? besides other interference anions (F?, AcO? and H2PO4?) in aqueous solution. Moreover, 2 can be used to detect CN? at a concentration as low as 0.32?μM, which is lower than the WHO guideline (2.7?μM) for cyanide. A low quantity of CN? (1.08?μM) can be detected and quantified using the prepared chemosensor. Moreover, the UV–vis and fluorescence spectroscopy studies of the interactions between 2 and dublex DNA revealed intercalative binding of calf thymus DNA to the chemosensor.  相似文献   

2.
As a novel macrocyclic host, pillar[5]arene can selectively recognise guest molecules in organic solvents. In this study, a fluorescent chemosensor composed of a functionalised-pillar[5]arene and Cu2+ metal complex (PN–Cu), which shows good selectivity for CN? anions, has been designed and synthesised. Complexation between PN–Cu and anions has been probed by means of various fluorescence-based methods. PN–Cu, as a turn-on fluorescence chemosensor showed high selectivity towards CN? ions in comparison to other anions, and its detection limit for CN? was calculated as 9.03 × 10?7 M. The PN–Cu sensor can serve as a recyclable component in sensing materials. Moreover, the interaction between the singly functionalised pillar[5]arene and Cu2+ has been probed through various tests. Based on the remarkable selectivity of the chemosensor PN–Cu, we propose that it might be used as a potential material for CN? recognition.  相似文献   

3.
A highly selective chemosensor 1 based on an acylhydrazone group as binding site and naphthalene group as the fluorescence signal group were described, which could instantly detect CN? in water with specific selectivity and high sensitivity. The detection of cyanide was performed via the nucleophilic attack of cyanide anion on the carbonyl group, which could be confirmed by 1H NMR, 13C NMR, ESI‐MS and DFT calculations. The addition of CN? to sensor 1 induced a remarkable color change from colorless to yellow and generated a blue fluorescence, these sense procedure could not interfered by other coexistent competitive anions (F?, Cl?, Br?, I?, AcO?, H2PO4?, HSO4?, ClO4?, SCN?, S2?, NO3? and SO42?). The detection limits were 5.0×10?7 M and 2.0×10?9 M of CN? using the visual fluorescent color changes and fluorescence spectra changes respectively, which is far lower than the WHO guideline of 1.9×10?6 M . Test strips based on sensor 1 were fabricated, which could act as a convenient and efficient CN? test kit to detect CN? in pure water for “in‐the‐field” measurement.  相似文献   

4.
A simple Al3+ fluorescent chemosensor (1) based on diacylhydrazone has been designed and synthesized by the condensation reaction of 2-hydroxy naphthaldehyde and metaphthalic hydrazide. The chemosensor 1 displays a specific and sensitive response to Al3+ over other cations in DMSO solution. Upon the addition of DMSO solution of Al3+, the sensor 1 shows an immediate fluorescence ‘turn-on’ response and emitting strong blue emission with visible color change from colorless to green. The fluorescence quantum yield enhanced from 7.24% to 48.68%. Meanwhile, the fluorescence and UV absorption spectra detection limits of the chemosensor 1 for Al3+ were 2.0 × 10?7 M and 5.6 × 10?7 M respectively, indicating the high sensitivity of 1 to Al3+. Furthermore, test strips based on 1 were fabricated, which could be used as a convenient test kit for the detection of Al3+ and an efficient Al3+ controlled fluorescent security display materials.  相似文献   

5.
ABSTRACT

A new fluorescent-colorimetric chemosensor L has been synthesised by Schiff base condensation reaction between 1,8-diaminooctane and 4-nitro-benzaldehyde in very good yields. Its photo-luminescent properties and selective detection properties for hydrazine have been examined. The synthesised chemosensor exhibited highly selective fluorescence on-off response for hydrazine amongst a wide range of different metal cations, anions and amines, along with the bare eye colour change from colourless to yellow based on intermolecular hydrogen-bond interaction. The limit of detection of the chemosensor L was estimated as 9.77 × 10?8 M or 3.12 × 10?6 g L?1 for hydrazine which is extremely below the limit set by the World Health Organization (WHO) and the binding stoichiometry was proposed to be 1 : 2 based on 1H NMR spectroscopic techniques and the Job’s plot analysis. The proposed sensing mechanism is the hydrogen-bonding interaction which has further been established by Density Functional Theory (Functional Density Theory (DFT)) studies. This recognition feature of sensor L makes it an efficient chemosensor for hydrazine detection in different water samples.  相似文献   

6.
《Comptes Rendus Chimie》2017,20(4):415-423
The optical and colorimetric properties of a new chemosensor 4-((2,4-dichlorophenyl)diazenyl)-2-(3-hydroxypropylimino)methyl)phenol (L) for cyanide ions were investigated by the naked-eye detection and UV–vis spectroscopy. This receptor reveals visual changes toward CN anions in aqueous media. No significant color changes were observed upon the addition of any other anions. The cyanide recognition properties of the receptor through proton-transfer were monitored by UV–vis titration and 1H NMR spectroscopy. The binding constant (Ka) and stoichiometry of the formed host–guest complex were calculated by the Benesi–Hildebrand (B–H) plot and Job's plot method, respectively. The detection limit of the probe towards CN was 1.03 × 10−6 mol L−1, which is lower than the maximum value of cyanide (1.9 × 10−6 mol L−1) permitted by the World Health Organization in drinking water. Thus, this chemosensor was sensitive enough to detect cyanide in aqueous solutions. 1H NMR experiments were conducted to investigate the nature of interaction between the receptor and CN anions. Notably, the designed sensor can be applied for the rapid detection of cyanide anions in the basic pH range and also under physiological conditions, for practical purposes for a long duration. The sensing behavior of the receptor was further emphasized by computational studies. Quantum-chemical calculations and molecular studies via Density Functional Theory (DFT) were carried out to supplement the experimental results.  相似文献   

7.
A new benzimidazole‐spiropyran conjugate chemosensor molecule ( BISP ) has been synthesized and characterized by 1H NMR spectroscopy, mass spectrometry (ESI‐MS), and elemental analysis. The two isomeric forms ( BISP ? BIMC ) were shown to be highly selective and sensitive to CN? among the ten anions studied in aqueous HEPES buffer, as shown by fluorescence and absorption spectroscopy and even by visual color changes, with a detection limit of 1.7 μM for BIMC . The reaction of CN? with BIMC was monitored by 1H NMR spectroscopy, high‐resolution mass spectrometry (HRMS), UV/Vis measurements, and fluorescence spectroscopy in HEPES buffer of pH 7.4. TDDFT calculations were performed in order to correlate the electronic properties of the chemosensor with its cyanide complex. Further, titration against thiophilic metal ions like Au3+, Cu2+, Ag+, and Hg2+ with [ BIMC‐CN ] in situ showed that it acts as a secondary recognition ensemble toward Au3+ and Cu2+ by switch‐on fluorescence. In addition, a reversible logic‐gate property of BIMC has been demonstrated through a feedback loop in the presence of CN? and Au3+ ions, respectively. Furthermore, the use of BIMC to detect CN? in live cells by fluorescence imaging has also been demonstrated. Notably, test strips based on BIMC were fabricated, which could serve as convenient and efficient CN? test kits.  相似文献   

8.
The present work describes a study of complexation efficiency of calix[4]arenes bearing benzoimidazolyl, benzothiazolyl, and benzoxazolyl heterocycles (57) towards several anions. The binding ability of calixarene derivatives 57 towards selected anions of different molecular geometries such as: F?, HSO4 ?, I?, N3 ?, NO3 ?, NO2 ?, SCN?, ClO4 ?, Br?, CN?, Cl?, CH3COO? CF3SO3 ? in methanol, has been investigated by fluorescence spectroscopic techniques, all anions were used as tetrabutylammonium salts to avoid possible complexation of cationic species by the derivative calix[4]arenes. Fluorescent chemosensor ability of these three calixarene derivatives was highly selective for iodide in contrast with other anions studied. The best chemosensor found, corresponds to compound 7, with an association constant of 2.01 × 104 mol?1 L and a detection limits of 0.22 ppm for iodide.  相似文献   

9.
A series of triptycene-derived Schiff bases were synthesized by condensation between amino triptycenes with an appropriate aldehyde and were isolated in good to excellent (85–90%) yields. Amongst these, a triptycene-hydroxybenzaldehyde Schiff base compound proved to be a selective sensor for cyanide. It exhibited a “turn-on” fluorescence response at 490 nm to CN? facilitated by the nucleophilic addition of CN? to the aldehyde group, accompanied by a visible color change from orange to yellow. Likewise, a triptycene salicylaldehyde adduct was shown to be highly sensitive towards the detection of the CN? ion with a detection limit of 0.9 μM. On the other hand a triptycene-BODIPY Schiff base compound could be used for the detection of Cu2+ ions over other competing, biologically relevant metal ions in acetonitrile. Photophysical studies revealed a 1:1 binding model for the triptycene-BODIPY compound.  相似文献   

10.
A new fluorescent chemosensor based on bithiophene coupled dimesitylborane (BMB-1) was synthesized and characterized. BMB-1 was used for colorimetric and turn-on fluorescent sensing of cyanide (CN) and fluoride (F) ions, in the presence of other competitive anions in an aqueous (CH3CN–H2O) medium. BMB-1 showed a hypsochromic shift (blue shift) with addition of CN and F ions in absorption studies. The lower detection level of CN and F ions is 1.37 × 10−9 and 1.75 × 10−9 M, respectively. The BMB-1 binding mechanism is based on the nucleophilic addition of CN and F ions in the internal charge transfer transition of bithio moiety to the boranylmesitylene unit, and the color changes were observed under UV light. This result is further confirmed by Fourier transform infrared spectroscopy, mass spectrometry and density functional theory calculations. Also, the BMB-1 probe is found to be a good adsorbent for the removal of F ions in real water samples using the adsorption technique.  相似文献   

11.
Coumarin-based urea and urea–amide scaffolds 13 have been designed and synthesized for the selective and naked eye detection of cyanide ion. Of the three, compound 3 exhibits ratiometric fluorescence change selectively in the presence of CN? and validates the rationality in designing anion receptor. Upon interaction with CN?, the color of the solution of 3 in CH3CN under UV exposure becomes bright yellow, which is beneficial for its naked eye detection. Addition of CN? of ~10?4 M brings nice color change from colourless to yellow in ordinary light. The sensing event is supposed to be due to nucleophilic addition of CN? to the coumarin unit enabling intramolecular charge transfer (ICT) mechanism.  相似文献   

12.
A new chemodosimeter based on pyridinium‐fused pyridinone iodide ( PI ) has been obtained through a “clean reaction” method. This compound can detect CN? in aqueous solution with a high selectivity and rapid response. The detection of CN? occurs through the nucleophilic attack of CN? on the C?N bond, which induces the destruction of the π‐conjugation on the pyridinium ring. Support of this detection mechanism was obtained by 1H NMR titration, HR‐MS, and DFT calculations. Upon the addition of 10 equivalents CN? to a solution of PI in THF/H2O (1:1, v/v), a 57‐fold enhancement in fluorescence intensity was observed at the maximum emission wavelength of 457 nm. Meanwhile, the maximum absorption wavelength was also blue‐shifted from 447 nm to 355 nm. Other common anions such as BF4?, PF6?, F?, Cl?, Br?, I?, H2PO4?, ClO4?, CH3COO?, NO2?, N3?, and SCN? had little effect on the detection of CN?. The response time of PI for CN? was less than 5 seconds. The detection limit was calculated to be 5.4×10?8 M , which is lower than the maximum permission concentration in drinking water (1.9 μM ) set by the World Health Organization (WHO).  相似文献   

13.
A new fluorescent turn-on chemosensor for Al3+ based on a diarylethene unit was designed and synthesized. Photochromism, fluorescence switch, and metal ion recognition behaviors of this diarylethene derivative were investigated by absorption and fluorescence emission spectra. It shows an outstanding fluorometric sensing ability toward Al3+ ion, and the detection limit was measured to be 9.3 × 10?8 mol L?1 via fluorescence methods. Based on these interesting properties, a combinational logic circuit was constructed successfully.  相似文献   

14.
An electrofluorochromic (EFC) conjugated copolymer ( PEFC ) containing carbazole and benzothiadiazole (BTD) moieties is synthesized through Suzuki coupling followed by electrochemical polymerization, resulting in a nanoporous EFC polymer electrode. The electrode exhibits high sensitivity and selectivity in the EFC detection of cyanide anions (CN?) in largely aqueous electrolyte (67 vol % water) because electrochemical oxidation of PEFC leads to significant fluorescence quenching, and the presence of different concentrations (1 to 100 μM ) of CN? in the electrolyte can weaken the oxidative quenching to substantially different extents. Although PEFC is hydrophobic in the neutral state, it is converted to radical cation/dication states upon oxidation, rendering the PEFC some hydrophilicity. Moreover, its nanoporous morphology provides a large surface area and short diffusion distance, facilitating the movement of CN? in the electrolyte into the PEFC film to interact with receptors. Density functional theory calculations show that the noncovalent interaction between electron‐deficient BTD and nucleophilic CN? is energy favorable in the oxidized states in both aqueous and organic media, suggesting that the specific π?–π+ interaction plays the main role in the CN? detection.  相似文献   

15.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   

16.
Selective and sensitive detection of toxic cyanide (CN?) by a post‐synthetically altered metal–organic framework (MOF) has been achieved. A post‐synthetic modification was employed in the MOF to incorporate the specific recognition site with the CN? ion over all other anions, such as Cl?, Br?, and SCN?. The aqueous‐phase sensing and very low detection limit, the essential prerequisites for an effective sensory material, have been fulfilled by the MOF. Moreover, the present detection level meets the standard set by the World Health Organization (WHO) for the permissible limit of cyanide concentration in drinking water. The utilization of MOF‐based materials as the fluorometric probes for selective and sensitive detection of CN? ions has not been explored till now.  相似文献   

17.
《Tetrahedron letters》2014,55(51):6965-6968
The selective assay of cyanide ions with a thioamide compound (HNPTU) containing phenol and pyridine as a chemosensor is reported using absorbance changes in a buffered aqueous solution (50 mM HEPES, pH 7.4) containing ethanol. Upon treatment with cyanide ions, the colorless solution of HNPTU turned yellow. No significant changes were observed with other comparable anions, such as F, Cl, Br, I, and CH3COO. The color change of HNPTU upon treatment with CN was maintained even in the presence of the comparable monovalent anions. The complex stability constant (Ka = 2.6 × 103) for the stoichiometric 1:1 complexation of HNPTU with cyanide ions was obtained based on absorbance titrations. The interaction of HNPTU with cyanide ions was proposed to be deprotonation, as shown by NMR and Cu(II) treatment experiments.  相似文献   

18.
A simple Schiff base sensor (L1) derived from N-(1-naphthyl) ethylenediamine dihydrochloride was designed and synthesised by simple chemistry procedures. The sensor exhibited a visible colour change observed by both colorimetric and fluorimetric responses for cyanide ion in aqueous solution. The detection of cyanide was performed via the nucleophilic attack of cyanide anion on the imine group of the sensor with a 1?:?1 binding stoichiometry. Moreover, test strips based on the sensor were fabricated, which served as convenient and efficient CN? test kits and the sensor L1 is a good way to detect hydrogen cyanide in aqueous extracts of sprouting potatoes.  相似文献   

19.
《中国化学》2017,35(7):1165-1169
We synthesized a new cyanide (CN ) chemosensor CX based on a nucleophilic addition reaction prompted by cyanide ion, which could be used for highly selective and sensitive fluorescence turn‐on detection of cyanide in aqueous media. The CX showed selective fluorescence recognition for CN , the miscellaneous competitive anions (F, Cl, Br, I, AcO , H2PO4, HSO4, ClO4, S2 , PO43−, CO32− and SCN ) did not lead to any significant interference. The detection limit of the sensor towards CN is 1.15 × 10−7 mol•L−1. The sensor has been successfully applied to estimate the cyanide ion in seeds of cherries. Test strips based on CX were fabricated, which could be used as a convenient and efficient CN test kit to detect CN in aqueous solution for “in‐the‐field” measurement.  相似文献   

20.
A water‐insoluble picket‐fence porphyrin was first assembled on nitrogen‐doped multiwalled carbon nanotubes (CNx MWNTs) through Fe? N coordination for highly efficient catalysis and biosensing. Scanning electron micrographs, Raman spectra, X‐ray photoelectron spectra, UV/Vis absorption spectra, and electrochemical impedance spectra were employed to characterize this novel nanocomposite. By using electrochemical methods on the porphyrin at low potential in neutral aqueous solution, the presence of CNx MWNTs led to the direct formation of a high‐valent iron(IV)–porphyrin unit, which produced excellent catalytic activity toward the oxidation of sulfite ions. By using sulfite ions, a widely used versatile additive and preservative in the food and beverage industries, as a model, a highly sensitive amperometric biosensor was proposed. The biosensor showed a linear range of four orders of magnitude from 8.0×10?7 to 4.9×10?3 mol L?1 and a detection limit of 3.5×10?7 mol L?1 due to the highly efficient catalysis of the nanocomposite. The designed platform and method had good analytical performance and could be successfully applied in the determination of sulfite ions in beverages. The direct noncovalent assembly of porphyrin on CNx MWNTs provided a facile way to design novel biofunctional materials for biosensing and photovoltaic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号