首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The structure of vimose, a novel tetrasaccharide isolated from the dried twigs of Orthenthera viminea (Family: Asclepiadaceae) has been established as O-β-L-diginopyranosyl-(1 →4)-O-β-L-diginopyranosyl-(1 →4)-O-β-L-diginopyranosyl-(1 → 4)-α-L-diginopyranose 1 on the basis of spectral and chemical evidence.  相似文献   

2.
Condensation reaction of 3,5-di-O-benzoyl-1,2-O-(1-cyanoben-zylidene)-β-D-arabinofuranose (2) with benzyl and allyl 2,3-di-O-benzoyl-5-O-triphenylmethyl-α-L-arabinofuranosides (5a and 5b) in methylene chloride in the presence of triphenylcarbenium tetrafluoroborate as catalyst under high vacuum gave α-(1→5)-linked dimeric D-arabinofuranoside derivatives (6a and 6b). One of the dimeric compounds (6a) was debenzoylated, triphenylmethylated, and rebenzoylated to give a dimeric homolog of 5a (8). Similarly for the preparation of 6a, 8 was condensed with 2 to provide an α-(1→5)-linked trimeric D-arabinofuranoside derivative (9). Further elongation of the glycoside chain might be possible in the same way.  相似文献   

3.
Abstract

By 1, 3-dipolar cycloaddition of benzonitrile oxide to 4, 6-di-O-acetyl-2, 3-dideoxy-D-erythro-hex-2-enono-1, 5-lactone (1), [3aR- (3aα, 6β,7α, 7aα)] - (2) and [3aS-(3aβ, 6β, 7α, 7aα)] -7- (acetyloxy) -6- (acetyloxymethyl) -3a, 6, 7, 7a-tetrahydro-3-phenyl-4H-pyrano [3, 4-d] isoxazole-4-one (3) were prepared in 58 and 7% yield respectively. From 2, [1′ R, 3aR-(3aα, 6β, 6aα)] -6-(1′, 2′-dihydroxymethyl)-6, 6a - dihydro-3-phenyl-furano [3, 4-d] isoxazole-4 (3aH) -one (5) was prepared by deacetylation. The structure of 3 was determined by X-ray analysis.  相似文献   

4.
Abstract

Selective glycosylation of benzyl 4,6-O-benzylidene-β-D-galacto-pyranoside (1) with 1.5 mole equivalent of 2,3,4,6-tetra-O-binzyl-α-D-galactopyranosyl bromide (2) catalyzed by halide ion gave the (1→2)-α-(5) and (l→3)-α-D-linked disaccharide (7) derivatives in 22 and 40% yields, respectively. The D-galactose unit at the reducing end of 2-O-α-D-galactopyranosyl-D-galactose [11) at equilibrium in D2O was shown By 13C NMR spectroscopy to exist in the pyranose and furanose forms in the ratio of ~2:1.  相似文献   

5.
α-Bromoacetals (1) are valuable precursors in synthesis of α,β-unsaturated carbonyl compounds (2), 1-alkoxybutadienes2 (3), ketene acetals3 (4), 2-methoxyallyl bromides4 (5) and other compounds. Because of our interest in the chemistry5,6 of 3 and 4 we attempted to improve known procedures for the preparation of 1 with the aim to get a short and efficient synthesis of these compounds.  相似文献   

6.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

7.
Abstract

Starting with methyl 2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (1), the isomeric methyl 2-amino-2-deoxy-α-D-glucopyranoside 3-, 4-, and 6-sulfates have each been prepared by sulfation of suitably blocked intermediates. Tritylation and acetylation of 1 followed by detritylation gave methyl 3,4-di-0-acetyl-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (3), having a free 6-hydroxyl group. Base catalyzed 0–4→0–6 acetyl migration provided the corresponding 3,6 di-O-acetyl derivative (4) posessing a free 4-hydroxyl group. Preparation of methyl 4,6-0-benzylidene-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (9) provided the intermediate bearing a free 3-hydroxyl group. 0-sulfation of 3, 4, and 9 was effected with the pyridine sulfur trioxide complex in dry pyridine.  相似文献   

8.
Bromoacetylation of methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β-D-galactopyranoside, followed by the cleavage of the methoxy group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,4-di-0-benzoyl-6-0-bromoacetyl-3-deoxy-3-fluoro-α-D-galactopyranosyl chloride (3). Reaction of 3 with methyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside promoted by silver trifluoromethanesulfonate afforded methyl 0-(2,4-di-O-benzoyl-6-O-bromoacetyl-3-deoxy-3-fluoro-β-D-galacto-pyranosyl)-(1→6)-2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5). O-Debromoacetylation of 5 with thiourea gave the disaccharide nucleophile 6 which was condensed with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl bromide to afford the expected β-(trans)-linked trisaccharide derivative 7. Debenzoylation of 7 gave the methyl β-glycoside 8 of the (1→6)-linked D-galactotriose having the HO-3 of the internal residue replaced by a fluorine atom. Compound 8 was used to further delineate the subsites in the combining area of the monoclonal anti-(1→6)-β-D-galactan-specific immunoglobulin IgA J539.  相似文献   

9.
Abstract

Selective acetolysis of methyl 2, 3, 4, 6-tetra-O-benzyl-α-D-manno-pyranoside (2) allows for easy preparation of 1-acetates of 2, 3,4, 6-tetra-O-benzyl (5), 6-O-acetyl-2, 3, 4, tri-O-benzyl-(6), 4, 6-di-O-acetyl-2,3-di-O-benzyl-(7), 3, 4, 6-tri-O-acetyl-2-O-benzyl-(8), and 2, 4, 6-tri-O-acetyl-3-O-benzyl-D-mannopyranoside (9). 8 and 9 formed are separated by preparative HPLC in 30-60g scale. The time course of previously described acetolyses of 3, 4, 6-tri-O-benzyl- 1, 2-O-(1-methoxyethyidene)-β-D-mannopyranose (3), and methyl 2, 3-dt-O-benzyl-4, 6-O-benzylldene-α-D-mannopyranoside (4) giving 9, 1, 2, 6-tri-O-acetyl-3, 4-di-O-benzyl-(10), and 1, 2-di-O-acetyl-3, 4, 6-tri-O-benzyl-(11) α-D-mannopyranose as well 7 have been studied.  相似文献   

10.
A treatment of 2,3,5-tri-O-benzyl-B-D-ribofuranosyl fluoride (1) with cyanotrimethylsilane in the presence of boron trifluoride diethyl etherate gave 2,3,5-tri-O-benzyl-α- () and -β-D-ribofuranosyl () cyanide in 46.2% and 46.6% yields, respectively. Confirmation of the corresponding isocyano isomer (3) formation and its conversion into 2 under boron trifluoride catalysis at -78°C made it possible to deduce that both and were produced by way of 3 which was formed preponderantly in the initial stage of the reaction. On the other hand, the reaction of 2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl fluoride (4) with cyanotrimethylsilane in diethyl ether by the use of boron trifluoride diethyl etherate (0.05 mol. equiv.) gave 2,3,4,6-tetra-O-benzyl-α -D-glucopyranosyl cyanide (), 2,3,4,6-tetra-O-benzyl-α- (), and -β-D-glucopyranosyl isocyanide () as a 30:61:9 mixture (94% yield) but that in dichloromethane by the use of the catalyst (1.0 mol. equiv.) gave (85% yield) as a sole product.

The reactions of 1 and of 4 with allyltrirnethylsilane under the same catalysis afforded C-allyl 2,3,5-tri-O-benzyl-α-D-ribofuranoside (7)(93.5% yield), and C-allyl 2,3,4,6-tetra-O-benzyl-α- ()(71.8% yield) and -β-D-glucopyranoside () (22.4% yield), respectively.  相似文献   

11.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

12.
A synthesis of α-bromo-α,β-unsaturated esters 2 from tert-butyl α-(trimethylsilyl)-α-bromoacetate (1) and carbonyl compounds is described.  相似文献   

13.
α-Dithiophosphates of peracetylated 2-deoxyhexc-pyranoses, 1a, 1b and 2, uhich are easily prepared by addition of organic phosphorodithioic acids to glycais react smoothly with resin-bound 2- and 4-nitrophenoxides to give stereoselectively the respective nitrophenyl 2-deoxy-β-D-hexopyranosides (3, 4, 5 and 6) in high yields. Glycosylation of the 2, 4-dinitro'phenoxide, however, leads with comparable stereoselectivity to 2,4-dinitrophenyl 2-deoxy- α-D-hexopyranosides (7 and 8).

Glycosides 3 - 6 are quantitatively deacetylatec by Amberlyst A-26 (OH-), whereas glycosides 7 and 8, under the same reaction conditions undergo splitting of the O-glycosidic bond.  相似文献   

14.
Abstract

The reactions of bromide, chloride, and iodide ions with 1,3,4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl) -α-D-glucopyranose (2) and with 1, 3, 4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl)-β-D-mannopyranose (3) gave good to excellent yields of the corresponding deoxyhalogeno sugars. In contrast, when the gluco triflate 2 and tetra-butylammonium fluoride were heated under reflux in benzene, only 5-(acetoxymethyl)-2-formylfuran (13) was formed. Reaction of the manno triflate 3 under similar conditions produced 1, 3,4, 6-tetra-O-acetyl-2-deoxy-2-fluoro-β-D-gluco-pyranose (17), 1. 3, 4. 6-tetra-O-acetyl-2-deoxy-β-D-erythro-hex-2-eno-pyranose (18), 4,6-di-O-acetyl-1, 5-anhydro-2-deoxy-D-erythro-hex-l-enitol-3-ulose (19), and 1, 2, 3, 4, 6-penta-O-acetyl-β-D-glucopyranose (20). The mechanisms of the reactions of The triflates 2 and 3 with fluoride ion are discussed.  相似文献   

15.
Abstract-Compound 1, the carbocyclic analogue of Ara-T, was synthesized by a four-step synthesis from (+)-(lα,2α,3β,5β)-3-amino-5-(hydroxymethyl)-l,2,-cyclopemane-diol (2), which was prepared from cyclopentadiene via a eight-step route as a potential antiviral agent.  相似文献   

16.
Abstract

Aldol reaction of 1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of aqueous K2CO3 afforded 3-C-acetonyl-1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-ribofuranose(2). Similar reaction of 1,2:5, 6-di-o-isopropylidene- α-D-ribo-hexofuranos-3-ulose (3) afforded 3-C-acetonyl-1,2:5, 6-di-o-isopropylidene- α-D-allofuranose (4) and (1R, 3R, 7R, 8S, 10R)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo[8,3,1,01,8,03,7] tetradecane. The stereochemistry of the new chiral centers were determined by 1H NOE experiments.  相似文献   

17.
Abstract

A scheme of asymmetric synthesis of C-glycosyl α-glycines is described. Reductive hydrolysis of 2-deoxy-3,5-di-O-p-toluoyl-β D-erythropentofuranose 1-cyanide (4) in the presence of N,N-diphenylethylenediamine gave the imidazolidine 5, which was converted to 2,5-anhydro-3-deoxy-4,6-di-O-p-toluoyl-β-D-allose (3)by acid hydrolysis. The aldehyde (3), chiralamine, benzoic acid and t-butyl isocyanide four component condensation afforded in good yield two diastereomeric adducts (6a and 6b), which were separated by column chromatography and deblocked to furnish 2-deoxy-β-D-erythropentofuranosyl R and S-glycines (1a) and (1b).  相似文献   

18.
Zhi-Tang Huang  Zhi-Rong Liu 《合成通讯》2013,43(9-10):1801-1812
Heterobicycles of δ-lactam fused with imidazolidine (4, 7), hexahydropyrimidine (5, 8), or hexahydro-1, 3-diazepine (6, 9) were synthesized by the reaction of heterocyclic ketene aminals 1, 2 or 3 with ester of α,β-unsaturated carboxylic acids.  相似文献   

19.
Abstract

Reductive cleavage of the glycosidic carbon-oxygen bonds of methyl 2,3,4,6-tetra-O-methyl-β-d-glucopyranoside (1), methyl 2,3,4,6-tetra-O-methyl-α-d-glucopyranoside (2), permethylated cellulose (6) and permethylated cyclohexaamylose (7) was carried out in the presence of deuteriotriethylsilane, and the configuration of deuterium in the l-deuterio-1,5-anhydro-d-glucitol derivatives (4, 5 and 9, 10) that were produced was established by 1H- and 2H-NMR spectroscopy. All reductions were carried out with boron trifluoride etherate as the catalyst as originally reported [D. Rolf and G. R. Gray, J. Am. Chem. Soc., 104, 3539 (1982)], as well as with trimethylsilyl trifluoromethanesulfon-ate which we now report efficiently catalyzes the regiospecific reductive cleavage of glycosides. Spectroscopic studies revealed that the configuration of deuterium in the products was independent of the configuration of the starting glycoside. The predominant (~95%) axial configuration observed leads us to propose that free oxonium ions (3 and 8) are formed as intermediates in these reductions.  相似文献   

20.
Condensation of p-nitrophenyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside 3 with 2,3,4-tri-O-(chlorosulfonyl)-β-D-xylopyranosyl chloride by the Koenigs-Knorr method afforded the α-linked product in a high yield. Dechlorosulfation with sodium iodide and debenzoylation by the Zemplen method gave crystalline p-nitrophenyl 6-O-(α-D-xylopyranosyl)-β-D-glucopyranoside 7.

Compound 3 was condensed with 2,3,4-tri-O-benzoyl-α-D-xylopyranosyl bromide in the presence of mercury (II) cyanide in acetonitrile, and after debenzoylation, crystalline p-nitrophenyl 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside 10 was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号