首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

2.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

3.
4.
It is proved that if a function from Lp, p > 1, satisfies the condition $$\frac{1}{{t \cdot \tau }}\int_0^t {\int_0^\tau {\left| {f(x + u,y + v) - f(x,y)} \right|} dudv = O\left( {\left[ {1n\frac{1}{{(t^2 + \tau ^2 )}}} \right]^{ - 2} } \right),}$$ then the double Fourier series of function f, under summation over a rectangle, converges almost everywhere.  相似文献   

5.
We derive the inequality $$\int_\mathbb{R}M(|f'(x)|h(f(x))) dx\leq C(M,h)\int_\mathbb{R}M\left({\sqrt{|f''(x)\tau_h(f(x))|}\cdot h(f(x))}\right)dx$$ with a constant C(M, h) independent of f, where f belongs locally to the Sobolev space ${W^{2,1}(\mathbb{R})}$ and f′ has compact support. Here M is an arbitrary N-function satisfying certain assumptions, h is a given function and ${\tau_h(\cdot)}$ is its given transform independent of M. When M(λ) =  λ p and ${h \equiv 1}$ we retrieve the well-known inequality ${\int_\mathbb{R}|f'(x)|^{p}dx \leq (\sqrt{p - 1})^{p}\int_\mathbb{R}(\sqrt{|f''(x) f(x)|})^{p}dx}$ . We apply our inequality to obtain some generalizations of capacitary estimates and isoperimetric inequalities due to Maz’ya (1985).  相似文献   

6.
In this work, we are mainly concerned with the existence of positive solutions for the fractional boundary-value problem $$ \left\{ {\begin{array}{*{20}{c}} {D_{0+}^{\alpha }D_{0+}^{\alpha }u=f\left( {t,u,{u}^{\prime},-D_{0+}^{\alpha }u} \right),\quad t\in \left[ {0,1} \right],} \hfill \\ {u(0)={u}^{\prime}(0)={u}^{\prime}(1)=D_{0+}^{\alpha }u(0)=D_{0+}^{{\alpha +1}}u(0)=D_{0+}^{{\alpha +1}}u(1)=0.} \hfill \\ \end{array}} \right. $$ Here ?? ?? (2, 3] is a real number, $ D_{0+}^{\alpha } $ is the standard Riemann?CLiouville fractional derivative of order ??. By virtue of some inequalities associated with the fractional Green function for the above problem, without the assumption of the nonnegativity of f, we utilize the Krasnoselskii?CZabreiko fixed-point theorem to establish our main results. The interesting point lies in the fact that the nonlinear term is allowed to depend on u, u??, and $ -D_{0+}^{\alpha } $ .  相似文献   

7.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

8.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

9.
Let Φ(t)= ∫_0^t a(s) ds and Ψ(t)= ∫_0^t b(s) ds, where a(s) is a positive continuous function such that ∫_0^1 \frac{a(s)}{s} ds < ∞and ∫_1^{\∞}\frac{a(s)}{s} ds= +\∞, and b(s) is an increasing function such that \lim_{s\to\∞}b(s)= +\∞. Letw be a weight function and suppose that w∈A1\∩ A'. Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent:(I) there exist positive constants C 1 and C 2 such that $$\int_0^s {\frac{{a\left( t \right)}}{t}dt \geqq } C_1 b\left( {C_2 s} \right)foralls > 0;$$ (II) there exist positive constants C 3 and C 4 such that $$\int {_{R^n } } \Psi \left( {C_3 \left| {f\left( x \right)} \right|} \right)w\left( x \right)dx \leqq C_4 \int {_{R^n } } \Phi \left( {Mf\left( x \right)} \right)w\left( x \right)dxforallf \in {\mathcal{R}}_0 \left( w \right)$$   相似文献   

10.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

11.
In this paper, we obtain bounds for the decay rate in the L r (? d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, $$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$ . We consider a kernel of the form K(x, y) = ψ(y?a(x)) + ψ(x?a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form $$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$ . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ? d : $$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$ Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  相似文献   

12.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

13.
The generalized weighted mean operator ${\mathbf{M}^{g}_{w}}$ is given by $$[\mathbf{M}^{g}_{w}f](x) = g^{-1} \left( \frac{1}{W(x)} \int \limits_{0}^{x}w(t)g(f(t))\,{\rm d}t \right),$$ with $$W(x) = \int \limits_{0}^{x} w(s) {\rm d}s, \quad {\rm for} \, x \in (0, + \infty),$$ where w is a positive measurable function on (0, + ∞) and g is a real continuous strictly monotone function with its inverse g ?1. We give some sufficient conditions on weights u, v on (0, + ∞) for which there exists a positive constant C such that the weighted strong type (p, q) inequality $$\left( \int \limits_{0}^{\infty} u(x) \Bigl( [\mathbf{M}^{g}_{w}f](x) \Bigr)^{q} {\rm d}x \right)^{1 \over q} \leq C \left( \int \limits_{0}^{\infty}v(x)f(x)^{p} {\rm d}x \right)^{1 \over p}$$ holds for every measurable non-negative function f, where the positive reals p,q satisfy certain restrictions.  相似文献   

14.
LetT be a possibly unbounded linear operator in the Banach spaceX such thatR(t)=(t+T)?1 is defined onR +. LetS=TR(I?TR) and letB(.,.) denote the Beta function. Theorem 1.1.T is a scalar-type spectral operator with spectrum in [0, ∞) if and only if $$sup\left\{ {B\left( {k,k} \right)^{ - 1} \int_0^\infty {\left| {x*S^k \left( t \right)x} \right|{{dt} \mathord{\left/ {\vphantom {{dt} t}} \right. \kern-\nulldelimiterspace} t};\left\| x \right\| \leqslant 1,} \left\| {x*} \right\| \leqslant 1,k \geqslant 1} \right\}< \infty .$$ A “local” version of this result is formulated in Theorem 2.2.  相似文献   

15.
Using the Multivariate Decomposition Method (MDM), we develop an efficient algorithm for approximating the ∞-variate integral $$\mathcal{I}_{\infty}(f) = \lim\limits_{d\rightarrow \infty} \int\limits_{\mathcal{R}_{+}^{d}}f(x_{1},\ldots,x_{d},0,0,\ldots)\cdot \exp\left(-\sum\limits_{j=1}^{d} x_{j}\right) \mathrm{d} \mathbf{x} $$ for a class of functions f that are once differentiable with respect to each variable. MDM requires efficient algorithms for d-variate versions of the problem. Such algorithms are provided by Smolyak’s construction which is based on efficient algorithms for the univariate integration $$ I \left(f\right) = \int_{0}^{\infty} f\left(x\right)^{-x} \mathrm{d} \mathbf{x}. $$ Detailed analysis and development of (nearly) optimal quadratures for I(f) is the main contribution of the current paper.  相似文献   

16.
Пусть?(x) — ограниченн ая функция на отрезке [0,1] и ее функция распределен ияΦ(t) удовлетворяет услов ию $$\Phi \left( t \right) + \Phi \left( { - t} \right) = 1.$$ Еслиf(x) — конечная поч ти всюду функция, то дл яF n (t) — функции распределе ния произведенияf(x)?(nx) — вы полнены соотношения и В частности, еслиf(x) — и нтегрируемая функци я, то из (1) следует, что $$\mathop {\lim }\limits_{n \to \infty } \mathop \smallint \limits_0^1 f\left( x \right)\varphi \left( {nx} \right)dx = 0 $$   相似文献   

17.
In this paper, we discuss the existence of solutions for irregular boundary value problems of nonlinear fractional differential equations with p-Laplacian operator $$\left \{ \begin{array}{l} {\phi}_p(^cD_{0+}^{\alpha}u(t))=f(t,u(t),u'(t)), \quad 0< t<1, \ 1< \alpha \leq2, \\ u(0)+(-1)^{\theta}u'(0)+bu(1)=\lambda, \qquad u(1)+(-1)^{\theta}u'(1)=\int_0^1g(s,u(s))ds,\\ \quad \theta=0,1, \ b \neq \pm1, \end{array} \right . $$ where \(^{c}D_{0+}^{\alpha}\) is the Caputo fractional derivative, ? p (s)=|s| p?2 s, p>1, \({\phi}_{p}^{-1}={\phi}_{q}\) , \(\frac {1}{p}+\frac{1}{q}=1\) and \(f: [0,1] \times\mathbb{R} \times\mathbb {R} \longrightarrow\mathbb{R}\) . Our results are based on the Schauder and Banach fixed point theorems. Furthermore, two examples are also given to illustrate the results.  相似文献   

18.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

19.
In this paper, we study the following second-order Emden-Fowler neutral delay differential equation $$(r(t)z'(t) )'+q(t)|x(\sigma(t))|^{\gamma-1}x(\sigma(t))=0,$$ where $z(t)=x(t)+p(t)x(t-\tau),\ \int_{t_{0}}^{\infty}\frac{1}{r(t)}\mathrm{d}t<\infty$ . We establish some new oscillation results which handle some cases not covered by known criteria.  相似文献   

20.
LetP(z) be a polynomial of degreen which does not vanish in the disk |z|<k. It has been proved that for eachp>0 andk≥1, $$\begin{gathered} \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P^{(s)} (e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} \leqslant n(n - 1) \cdots (n - s + 1) B_p \hfill \\ \times \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P(e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} , \hfill \\ \end{gathered} $$ where $B_p = \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {k^s + e^{i\alpha } } \right|^p d\alpha } } \right\}^{ - 1/p} $ andP (s)(z) is thesth derivative ofP(z). This result generalizes well-known inequality due to De Bruijn. Asp→∞, it gives an inequality due to Govil and Rahman which as a special case gives a result conjectured by Erdös and first proved by Lax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号