首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted protein quantification using peptide surrogates has increasingly become important to the validation of biomarker candidates and development of protein therapeutics. These approaches have been proposed and employed as alternatives to immunoassays in biological fluids. Technological advances over the last 20 years in biochemistry and mass spectrometry have prompted the use of peptides as surrogates to quantify enzyme digested proteins using triple quadrupole mass spectrometers. Multiple sample preparation processes are often incorporated to achieve quantification of target proteins using these signature peptides. This review article focuses on these processes or hyphenated techniques for quantification of proteins with peptide surrogates. The most recent advances and strategies involved with hyphenated techniques are discussed.  相似文献   

2.
3.
Bicyclic and tricyclic peptides have emerged as promising candidates for the development of protein binders and new therapeutics. However, convenient and efficient strategies that can generate topologically controlled bicyclic and tricyclic peptide scaffolds from fully‐unprotected peptides are still much in demand, particularly for those amenable to the design of biosynthetic libraries. In this work, we report a reliable chemical and ribosomal synthesis of topologically controlled bicyclic and tricyclic peptide scaffolds. Our strategy involves the combination of selenoether cyclization followed by disulfide or thioether cyclization, yielding desirable bicyclic and tricyclic peptides. This work thus lays the foundation for developing peptide libraries with controlled topology of multicyclic scaffolds for in vitro display techniques.  相似文献   

4.
New methods for peptide separation are being developed. Resolution of peptide mixtures on HPLC with good reproducibility indicates the progress that has already been made in development of supports with useful separation capabilities. At present adsorptive characteristics of the stationary phases may place limitations on the applicability of the technique to underivatized peptides. Hopefully, the application of ionpairing techniques and the development of new support materials will expand the range of application for protein and peptide purification.  相似文献   

5.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.  相似文献   

6.
The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free-radical-mediated dechalcogenation. By exploiting phosphine-induced homolysis of the C−Se and C−S bonds of selenocysteine and cysteine, respectively, we demonstrate the site-selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low-oxidation-state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein.  相似文献   

7.
Summary.  This review highlights the use of enzymatic protecting group techniques in the synthesis of lipidated peptides. Lipidated proteins play key roles in signal transduction processes. Moreover, structurally well-defined peptides containing the characteristic linkage region of the peptide backbone with the lipid can provide valuable tools for the study of biological phenomena associated with these protein conjugates. The multifunctionality and pronounced lability towards acids and bases of such compounds render their synthesis a formidable challenge. However, the recent development of enzymatic protection groups provides an efficient access to these sensitive and biologically relevant peptide conjugates under particular mild conditions and with high selectivity. Received December 12, 1999. Accepted January 26, 2000  相似文献   

8.
Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet widely available and often suffers from significantly lower sensitivity than CID. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss-triggered MS(3) and multi-stage activation) during liquid chromatography/multi-stage mass spectrometric (LC/MS(n)) analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss-triggered MS(3) experiments, MS(3) scans triggered by neutral losses of 3 H(2)O or 3 H(2)O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H(2)O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss-triggered MS(3) approach resulted in much higher specificity. Both techniques are viable alternatives to ETD for identifying glycated peptides. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Summary The paper gives a review of investigations aimed at the development of instruments and techniques for analytical chemistry performed by the Institute for Analytical Instrumentation of the USSR Academy of Sciences. Advances in mass spectrometry of non-volatile labile compounds, determination of amino acid sequence in peptides, multidimensional Mössbauer spectroscopy, EPR recording optical techniques, microcolumn chromatography, field flow fractionation (FFF), and flow injection analysis (FIA) are considered.
Einige Aspekte des analytischen Gerätebaus: Modelle, Verfahren, Instrumente
  相似文献   

10.
The analytical utility of the electron capture dissociation (ECD) technique, developed by McLafferty and co-workers, has substantially improved peptide and protein characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The limitations of the first ECD implementations on commercial instruments were eliminated by the employment of low-energy electron-injection systems based on indirectly heated dispenser cathodes. In particular, the ECD rate and reliability were greatly increased, enabling the combination of ECD/FTICR-MS with on-line liquid separation techniques. Further technique development allowed the combination of two rapid fragmentation techniques, high-rate ECD and infrared multiphoton dissociation (IRMPD), in a single experimental configuration. Simultaneous and consecutive irradiations of trapped ions with electrons and photons extended the possibilities for ion activation/dissociation and led to improved peptide and protein characterization. The application of high-rate ECD/FTICR-MS has demonstrated its power and unique capabilities in top-down sequencing of peptides and proteins, including characterization of post-translational modifications, improved sequencing of peptides with multiple disulfide bridges and secondary fragmentation (w-ion formation). Analysis of peptide mixtures has been accomplished using high-rate ECD in bottom-up mass spectrometry based on mixture separation by liquid chromatography and capillary electrophoresis. This paper summarizes the current impact of high-rate ECD/FTICR-MS for top-down and bottom-up mass spectrometry of peptides and proteins.  相似文献   

11.
质谱成像是质谱技术在发展过程中所衍生出的前沿性科研领域,是一种将质谱技术和影像可视化技术结合而成的高科技"拍照"手段。它可以在没有特异性标记的情况下,对小分子、多肽、蛋白质等目标分子进行分析,在利用质谱分析提供目标化合物的结构信息的同时,提供其空间分布和含量变化信息。该技术在生物医药、临床医学、病理学、生命科学研究等领域具有极大的应用前景。  相似文献   

12.
We present the first electrochemical detection, characterization, and kinetic study of the aggregation of Alzheimer's disease (AD) amyloid beta peptides (Abeta-40, Abeta-42) using three different voltammetric techniques at a glassy carbon electrode (GCE). This method is based on detecting changes in the oxidation signal of tyrosine (Tyr) residue. As the peptides aggregate, there are structure conformational changes, which affect the degree of exposure of Tyr to the molecular surface of the peptides. The results show significant differences in the aggregation process between the two peptides, and these correlate highly with established techniques. The method is rapid and label-free, and the principle can be universally applied to other protein aggregation studies related to diseases, such as Huntington's, Parkinson's, and Creutzfeldt Jacob (CJD). This method could also be explored in screening for the effectiveness of AD therapies.  相似文献   

13.
14.
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d /l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion‐mobility spectrometry.  相似文献   

15.
The construction of homogeneous glycoproteins presents a formidable challenge to the synthetic chemist. Over the past few years there has been an explosion in the number of methods developed to address this problem. These methods include the development of novel ligation technologies for the synthesis of the protein backbone, as well chemical and enzymatic approaches for introducing complex glycans into the peptide backbone. This tutorial review discusses the application of these techniques to the synthesis of peptides and proteins possessing well defined glycans.  相似文献   

16.
Vitamin K-dependent carboxylation of glutamic acid (Glu) residues into γ-carboxyglutamic acid (Gla) is a post-translational modification essential for normal protein activity of, for example, proteins involved in the blood coagulation system. These proteins may contain as many as 12 sites for γ-carboxylation within a protein sequence of 45 amino acid residues. In the biopharmaceutical industry, powerful analytical techniques are required for identification and localization of modified sites. We here present comparatively easy and rapid methods for studies of Gla-containing proteins using recent technology. The performances of two mass spectrometric fragmentation techniques, collision-induced dissociation (CID) and electron transfer dissociation (ETD), were evaluated with respect to γ-carboxylated peptides, applying on-line LC-ion trap MS. ETD MS has so far not been reported for Gla-containing peptides and the applicability of CID for heavily γ-carboxylated proteins has not been evaluated. The anticoagulant protein, protein C, containing nine Gla-sites, was chosen as a model protein. After tryptic digestion, three peptides containing Gla-residues were detected by MS; a 1.2 kDa fragment containing two Gla-residues, a 4.5 kDa peptide containing seven residues and also the 5.6 kDa tryptic peptides containing all nine Gla-residues. Regarding the shortest peptide, both CID and ETD provided extensive peptide sequencing. For the larger peptides, fragmentation by CID resulted in loss of the 44 Da CO(2)-group, while little additional fragmentation of the peptide chain was observed. In contrast, ETD resulted in comprehensive fragmentation of the peptide backbone. The study demonstrates that the combination of both techniques would be beneficial and complementary for investigation of γ-carboxylated proteins and peptides.  相似文献   

17.
Our approach to multivalent peptide construction relies on tentacle peptides, also known as a multiple antigenic peptides, which contain two and four repeats of a selected peptide. In this communication, we report the results of preliminary studies aimed at (1) the selection of short peptides against the carbohydrate, sLeX, (2) the synthesis of tentacle dimers and tetramers of the selected peptides, and (3) the determination of affinities and specificities of the peptides to several related carbohydrates by using the surface plasmon resonance (SPR) and the equilibrium dialysis techniques. Binding affinity studies, as well as assays of in vitro binding of the peptides to a sLeX-specific cell line, have shown that the tetrameric peptides bind to the cell surface sugars.  相似文献   

18.
The synthesis and NMR elucidation of two novel pentacycloundecane (PCU)‐based peptides are reported. The PCU cage amino acids were synthesised as racemates and the incorporation of the cage amino acid with (S)‐natural amino acids produced diastereomeric peptides. The diastereomeric ‘cage’ peptides were separated using preparative HPLC and the NMR elucidation of these PCU containing peptides are reported for the first time. The 1H and 13C NMR spectra showed series of overlapping signals of the cage skeleton and that of the peptide, making it extremely difficult to resolve the structure using one‐dimensional NMR techniques only. The use of two‐dimensional NMR techniques proved to be a highly effective tool in overcoming this problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Biomarker discovery in human urine has become an evolving and potentially valuable topic in relation to renal function and diseases of the urinary tract. In order to deliver on the promises and to facilitate the development of validated biomarkers or biomarker panels, protein and peptide profiling techniques need high sample throughput, speed of analysis, and reproducibility of results. Here, we outline the performance characteristics of the liquid chromatography/MALDI-TOF-MS based differential peptide display (DPD(1)) approach for separating, detecting, abundance profiling and identification of native peptides derived from human urine. The typical complexity of peptides in human urine (resolution of the technique with respect to detectable number of peptides), the reproducibility (coefficient of variation for abundance profiles of all peptides detected in biological samples) and dynamic range of the technique as well as the lower limit of detection were characterized. A substantial number of peptides present in normal human urine were identified and compared to findings in four published proteome studies. In an explorative approach, pathological urines from patients suffering from post-renal-filtration diseases were qualitatively compared to normal urine. In conclusion, the peptidomics technology as shown here has a great potential for high throughput and high resolution urine peptide profiling analyses. It is a promising tool to study not only renal physiology and pathophysiology and to determine new biomarkers of renal diseases; it also has the potential to study remotely localized or systemic aberrations within human biology.  相似文献   

20.
The adsorption or covalent attachment of biological macromolecules onto polymer materials to improve their biocompatibility has been pursued using a variety of approaches, but key to understanding their efficacy is the verification of the structure and dynamics of the immobilized biomolecules. Here we present data on peptides designed to adsorb from aqueous solutions onto highly porous hydrophobic surfaces with specific helical secondary structures. Small linear peptides composed of alternating leucine and lysine residues were synthesized, and their adsorption onto porous polystyrene surfaces was studied using a combination of solid-state NMR techniques. Using conventional solid-state NMR experiments and newly developed double-quantum techniques, their helical structure was verified. Large-amplitude dynamics on the NMR time scale were not observed, suggesting irreversible adsorption of the peptides. Their association, adsorption, and structure were examined as a function of helix length and sequence periodicity, and it was found that, at higher solution concentrations, peptides as short as seven amino acids adsorb with defined secondary structures. Two-dimensional double-quantum experiments using (13)C-enriched peptide sequences allow high-resolution determination of secondary structure in heterogeneous environments where the peptides are a minor component of the material. These results shed light on how polymeric surfaces may be surface-modified by structured peptides and demonstrate the level of molecular structural and dynamic information solid-state NMR can provide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号