首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucins are a class of highly O‐glycosylated proteins found on the surface of cells in epithelial tissues. O‐Glycosylation is crucial for the functionality of mucins and changes therein can have severe consequences for an organism. With that in mind, the elucidation of interactions of carbohydrate binding proteins with mucins, whether in morbidly altered or unaltered conditions, continue to shed light on mechanisms involved in diseases like chronic inflammations and cancer. Despite the known importance of type‐1 and type‐2 elongated mucin cores 1–4 in glycobiology, the corresponding type‐1 structures are much less well studied. Here, the first chemical synthesis of extended mucin type‐1 O‐glycan core 1–3 amino acid structures based on a convergent approach is presented. By utilizing differentiation in acceptor reactivity, shared early stage Tn‐ and T‐acceptor intermediates were elongated with a common type‐1 [β‐D ‐Gal‐1,3‐β‐D ‐GlcNAc] disaccharide, which allows for straightforward preparation of diverse glycosylated amino acids carrying the type‐1 mucin core 1–3 saccharides. The obtained glycosylated 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino acid building blocks were employed in synthesis of type‐1 mucin glycopeptides, which are useful in biological applications.  相似文献   

2.
Human and avian influenza type A viruses bind sialylated pentasaccharides. Herein, the total synthesis of four of these glycans is reported. Efficient sialylations relied on two N‐Troc‐protected (Troc=2,2,2‐trichloroethoxycarbonyl) sialic acid building blocks. The first, a thiophenyl glycoside, readily produced the sialyl‐α(2‐6)galactose disaccharide. Combination of the second building block, a novel glycosyl phosphite, and a benzylidene‐protected galactoside produced the best results for the formation of the sialyl‐α(2‐3)galactose. Two common trisaccharides were assembled by the introduction of glucose, galactose, and glucosamine building blocks followed by selective deprotection. Two sets of pentasaccharides were obtained by the union of two sialylgalactose N‐phenyl trifluoroacetimidate building blocks with the two trisaccharides above. Global deprotection furnished the desired pentasaccharides. The products of these total syntheses are currently employed on the surface of carbohydrate microarrays to detect and type different strains of the influenza virus.  相似文献   

3.
The glycosylation reaction is the key transformation in oligosaccharide synthesis, but it is still difficult to control in many cases. Stereocontrol during cis‐glycosidic linkage formation relies almost exclusively on tuning the glycosylating agent or the reaction conditions. Herein, we use nucleophile‐directed stereocontrol to manipulate the stereoselectivity of glycosylation reactions. Placing two fluorine atoms in close proximity to the hydroxy group of an aliphatic amino alcohol lowers the oxygen nucleophilicity and reverses the stereoselectivity of glycosylations to preferentially form the desired cis‐glycosides with a broad set of substrates. This concept was applied to the design of a cis‐selective linker for automated glycan assembly. Fluorination of an amino alcohol linker does not impair glycan immobilization and lectin binding as illustrated by glycan microarray experiments. These fluorinated linkers enable the facile generation of α‐terminating synthetic glycans for the formation of glycoconjugates.  相似文献   

4.
Protein glycosylation is a ubiquitous post‐translational modification that regulates the folding and function of many proteins. Misfolding of protein monomers and their toxic aggregation are the hallmark of many prevalent diseases. Thus, understanding the role of glycans in protein aggregation is highly important and could contribute both to unraveling the pathology of protein misfolding diseases as well as providing a means for modifying their course for therapeutic purposes. Using β‐O‐linked glycosylated variants of the highly studied Tau‐derived hexapeptide motif VQIVYK, which served as a simplified amyloid model, we demonstrate that amyloid formation and toxicity can be strongly attenuated by a glycan unit, depending on the nature of the glycan itself. Importantly, we show for the first time that not only do glycans hinder self‐aggregation, but the glycosylated peptides are capable of inhibiting aggregation of the non‐modified corresponding amyloid scaffold.  相似文献   

5.
The biological recognition of complex‐type N ‐glycans is part of many key physiological and pathological events. Despite their importance, the structural characterization of these events remains unsolved. The inherent flexibility of N ‐glycans hampers crystallization and the chemical equivalence of individual branches precludes their NMR characterization. By using a chemoenzymatically synthesized tetra‐antennary N ‐glycan conjugated to a lanthanide binding tag, the NMR signals under paramagnetic conditions discriminated all four N ‐acetyl lactosamine antennae with unprecedented resolution. The NMR data revealed the conformation of the N ‐glycan and permitted for the first time the direct identification of individual branches involved in the recognition by two N ‐acetyllactosamine‐binding lectins, Datura stramonium seed lectin (DSL) and Ricinus Communis agglutinin (RCA120).  相似文献   

6.
High‐mannose‐type glycans (HMTGs) decorating viral spike proteins are targets for virus neutralization. For carbohydrate‐binding proteins, multivalency is important for high avidity binding and potent inhibition. To define the chemical determinants controlling multivalent interactions we designed glycopeptide HMTG mimetics with systematically varied mannose valency and spacing. Using the potent antiviral lectin griffithsin (GRFT) as a model, we identified by NMR spectroscopy, SPR, analytical ultracentrifugation, and microcalorimetry glycopeptides that fully recapitulate the specificity and kinetics of binding to Man9GlcNAc2Asn and a synthetic nonamannoside. We find that mannose spacing and valency dictate whether glycopeptides engage GRFT in a face‐to‐face or an intermolecular binding mode. Surprisingly, although face‐to‐face interactions are of higher affinity, intermolecular interactions are longer lived. These findings yield key insights into mechanisms involved in glycan‐mediated viral inhibition.  相似文献   

7.
Sialic‐acid‐binding, immunoglobulin‐type lectin‐7 (Siglec‐7) is present on the surface of natural killer cells. Siglec‐7 shows preference for disialylated glycans, including α(2,8)‐α(2,3)‐disialic acids or internally branched α(2,6)‐NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one‐pot multiple enzyme method from Gb5 by α2,3‐sialylation (with PmST1) followed by α2,6‐sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing‐end galactose of Gb5 as 3,4‐O‐acetonide, 3,4‐O‐benzylidene, and 4,6‐O‐benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo‐glycans. Surprisingly, DSGb5 shows a low affinity for Siglec‐7 in a glycan microarray binding affinity assay. Among the synthesized globo‐series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec‐7.  相似文献   

8.
A divergent chemoenzymaytic approach for the preparation of core‐fucosylated and core‐unmodified asymmetrical N‐glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N‐glycans. Antennae‐selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N‐glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core‐fucoside without affecting the fucoside of a sialyl LewisX epitope to give easy access to core‐unmodified compounds.  相似文献   

9.
Glycoproteins in animal cells contain a variety of glycan structures that are added co‐ and/or posttranslationally to proteins. Of over 20 different types of sugar–amino acid linkages known, the two major types are N‐glycans (Asn‐linked) and O‐glycans (Ser/Thr‐linked). An abnormal mucin‐type O‐glycan whose expression is associated with cancer and several human disorders is the Tn antigen. It has a relatively simple structure composed of Nacetyl‐D ‐galactosamine with a glycosidic α linkage to serine/threonine residues in glycoproteins (GalNAcα1‐O‐Ser/Thr), and was one of the first glycoconjugates to be chemically synthesized. The Tn antigen is normally modified by a specific galactosyltransferase (T‐synthase) in the Golgi apparatus of cells. Expression of active T‐synthase is uniquely dependent on the molecular chaperone Cosmc, which is encoded by a gene on the X chromosome. Expression of the Tn antigen can arise as a consequence of mutations in the genes for T‐synthase or Cosmc, or genes affecting other steps of O‐glycosylation pathways. Because of the association of the Tn antigen with disease, there is much interest in the development of Tn‐based vaccines and other therapeutic approaches based on Tn expression.  相似文献   

10.
The N-Troc (2,2,2-trichloroethoxycarbonyl) groups in glucosamine and muramic acid derivatives were removed by treatment with tetrabutylammonium fluoride (TBAF) under mild conditions. The use of Troc protection for the amino group in aminosugars such as glucosamine is increasing the importance for selective and efficient glycosylation, and the cleavage method described here will expand the available opportunities for using the Troc group in the preparation of a variety of glycans. This cleavage is especially advantageous for compounds that are labile or may be decomposed under acidic conditions, strong basic conditions, or reductive conditions.  相似文献   

11.
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N‐glycans with α1,6‐linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N‐glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β‐prism III. Three biantennary core‐fucosylated N‐glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6‐fucosylated N‐glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N‐glycan flexibility upon binding.  相似文献   

12.
A new multivalent glycopolymer platform for lectin recognition is introduced in this work by combining the controlled growth of glycopolymer brushes with highly specific glycosylation reactions. Glycopolymer brushes, synthetic polymers with pendant saccharides, are prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) of 2‐O‐(N‐acetyl‐β‐d ‐glucosamine)ethyl methacrylate (GlcNAcEMA). Here, the fabrication of multivalent glycopolymers consisting of poly(GlcNAcEMA) is reported with additional biocatalytic elongation of the glycans directly on the silicon substrate by specific glycosylation using recombinant glycosyltransferases. The bioactivity of the surface‐grafted glycans is investigated by fluorescence‐linked lectin assay. Due to the multivalency of glycan ligands, the glycopolymer brushes show very selective, specific, and strong interactions with lectins. The multiarrays of the glycopolymer brushes have a large potential as a screening device to define optimal‐binding environments of specific lectins or as new simplified diagnostic tools for the detection of cancer‐related lectins in blood serum.

  相似文献   


13.
Molecular imaging of glycans has been actively pursued in animal systems for the past decades. However, visualization of plant glycans remains underdeveloped, despite that glycosylation is essential for the life cycle of plants. Metabolic glycan labeling in Arabidopsis thaliana by using N‐azidoacetylglucosamine (GlcNAz) as the chemical reporter is reported. GlcNAz is metabolized through the salvage pathway of N‐acetylglucosamine (GlcNAc) and incorporated into N‐linked glycans, and possibly intracellular O‐GlcNAc. Click‐labeling with fluorescent probes enables visualization of newly synthesized N‐linked glycans. N‐glycosylation in the root tissue was discovered to possess distinct distribution patterns in different developmental zones, suggesting that N‐glycosylation is regulated in a developmental stage‐dependent manner. This work shows the utility of metabolic glycan labeling in elucidating the function of N‐linked glycosylation in plants.  相似文献   

14.
Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)‐catalyzed azide–alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide‐ or alkyne‐tagged glycans, a sufficiently low spatial density of dye‐labeled glycans was achieved, enabling dynamic single‐molecule tracking and super‐resolution imaging of N‐linked sialic acids and O‐linked N‐acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye‐labeled glycans in mammary cancer cells revealed constrained diffusion of both N‐ and O‐linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.  相似文献   

15.
Congenital disorders of glycosylation (CDG) are due to defective glycosylation of glycoconjugates. Conserved oligomeric Golgi (COG)‐CDG are genetic diseases due to defects of the COG complex subunits 1–8 causing N‐glycan and O‐glycan processing abnormalities. In COG‐CDG, isoelectric focusing separation of undersialylated glycoforms of serum transferrin and apolipoprotein C‐III (apoC‐III) allows to detect N‐glycosylation and O‐glycosylation defects, respectively. COG5‐CDG (COG5 subunit deficiency) is a multisystem disease with dysmorphic features, intellectual disability of variable degree, seizures, acquired microcephaly, sensory defects and autistic behavior. We applied matrix‐assisted laser desorption/ionization‐MS for a high‐throughput screening of differential serum O‐glycoform and N‐ glycoform in five patients with COG5‐CDG. When compared with age‐matched controls, COG5‐CDG showed a significant increase of apoC‐III0a (aglycosylated glycoform), whereas apoC‐III1 (mono‐sialylated glycoform) decreased significantly. Serum N‐glycome of COG5‐CDG patients was characterized by the relative abundance of undersialylated and undergalactosylated biantennary and triantennary glycans as well as slight increase of high‐mannose structures and hybrid glycans. Using advanced and well‐established MS‐based approaches, the present findings reveal novel aspects on O‐glycan and N‐glycan profiling in COG5‐CDG patients, thus providing an increase of current knowledge on glycosylation defects caused by impairment of COG subunits, in support of clinical diagnosis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The conformations of peptides and proteins are often influenced by glycans O‐linked to serine (Ser) or threonine (Thr). (2S,4R)‐4‐Hydroxyproline (Hyp), together with L ‐proline (Pro), are interesting targets for O‐glycosylation because they have a unique influence on peptide and protein conformation. In previous work we found that glycosylation of Hyp does not affect the N‐terminal amide trans/cis ratios (Ktrans/cis) or the rates of amide isomerization in model amides. The stereoisomer of Hyp—(2S,4S)‐4‐hydroxyproline (hyp)—is rarely found in nature, and has a different influence both on the conformation of the pyrrolidine ring and on Ktrans/cis. Glycans attached to hyp would be expected to be projected from the opposite face of the prolyl side chain relative to Hyp; the impact this would have on Ktrans/cis was unknown. Measurements of 3J coupling constants indicate that the glycan has little impact on the Cγendo conformation produced by hyp. As a result, it was found that the D ‐galactose residue extending from a Cγendo pucker affects both Ktrans/cis and the rate of isomerization, which is not found to occur when it is projected from a Cγexo pucker; this reflects the different environments delineated by the proline side chain. The enthalpic contributions to the stabilization of the trans amide isomer may be due to disruption of intramolecular interactions present in hyp; the change in enthalpy is balanced by a decrease in entropy incurred upon glycosylation. Because the different stereoisomers—Hyp and hyp—project the O‐linked carbohydrates in opposite spatial orientations, these glycosylated amino acids may be useful for understanding of how the projection of a glycan from the peptide or protein backbone exerts its influence.  相似文献   

17.
Single glycan–protein interactions are often weak, such that glycan binding partners commonly utilize multiple, spatially defined binding sites to enhance binding avidity and specificity. Current array technologies usually neglect defined multivalent display. Laser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry, neo-glycopeptides were produced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display. The two lectins concanavalin A and langerin were probed with different glycans on multivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measure the surface dissociation constant. This approach allows for a rapid generation, screening, and optimization of a multitude of multivalent scaffolds for glycan binding.  相似文献   

18.
A library of neutral, hydrophobic reagents was synthesized for use as derivatizing agents in order to increase the ion abundance of N-linked glycans in electrospray ionization mass spectrometry (ESI MS). The glycans are derivatized via hydrazone formation and are shown to increase the ion abundance of a glycan standard more than 4-fold. Additionally, the data show that the systematic addition of hydrophobic surface area to the reagent increases the glycan ion abundance, a property that can be further exploited in the analysis of glycans. The results of this study will direct the future synthesis of hydrophobic reagents for glycan analysis using the correlation between hydrophobicity and theoretical non-polar surface area calculation to facilitate the development of an optimum tag for glycan derivatization. The compatibility and advantages of this method are demonstrated by cleaving and derivatizing N-linked glycans from human plasma proteins. The ESI-MS signal for the tagged glycans are shown to be significantly more abundant, and the detection of negatively charged sialylated glycans is enhanced.  相似文献   

19.
N‐glycan structures released from miniature pig endothelial and islet cells were determined by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF), negative ion electrospray ionization (ESI) MS/MS and normal‐phase high performance liquid chromatography (NP‐HPLC) combined with exoglycosidase digestion. Totally, the identified structures were 181 N‐glycans including 129 sialylated and 18 α‐galactosylated glycans from pig endothelial cells and 80 N‐glycans including 41 sialylated and one α‐galactosylated glycans from pig islet cells. The quantity of the α‐galactosylated glycans from pig islet cells was certainly neglectable compared to pig endothelial cells. A number of NeuGc‐terminated N‐glycans (80 from pig endothelial cells and 13 from pig islet cells) are newly detected by our mass spectrometric strategies. The detailed structural information will be a matter of great interest in organ or cell xenotransplantation using α 1,3‐galactosyltransferase gene‐knockout (GalT‐KO) pig. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
CCL1 is a naturally glycosylated chemokine protein that is secreted by activated T‐cells and acts as a chemoattractant for monocytes. 1 Originally, CCL1 was identified as a 73 amino acid protein having one N‐glycosylation site, 1 and a variant 74 residue non‐glycosylated form, Ser‐CCL1, has also been described. 2 There are no systematic studies of the effect of glycosylation on the biological activities of either CCL1 or Ser‐CCL1. Here we report the total chemical syntheses of both N‐glycosylated and non‐glycosylated forms of (Ser‐)CCL1, by convergent native chemical ligation. We used an N‐glycan isolated from hen egg yolk together with the Nbz linker for Fmoc chemistry solid phase synthesis of the glycopeptide‐αthioester building block. 3 Chemotaxis assays of these glycoproteins and the corresponding non‐glycosylated proteins were carried out. The results were correlated with the chemical structures of the (glyco)protein molecules. To the best of our knowledge, these are the first investigations of the effect of glycosylation on the chemotactic activity of the chemokine (Ser‐)CCL1 using homogeneous N‐glycosylated protein molecules of defined covalent structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号