首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several new heteroleptic SnII complexes supported by amino‐ether phenolate ligands [Sn{LOn}(Nu)] (LO1=2‐[(1,4,7,10‐tetraoxa‐13‐azacyclopentadecan‐13‐yl)methyl]‐4,6‐di‐tert‐butylphenolate, Nu=NMe2 ( 1 ), N(SiMe3)2 ( 3 ), OSiPh3 ( 6 ); LO2=2,4‐di‐tert‐butyl‐6‐(morpholinomethyl)phenolate, Nu=N(SiMe3)2 ( 7 ), OSiPh3 ( 8 )) and the homoleptic Sn{LO1}2 ( 2 ) have been synthesized. The alkoxy derivatives [Sn{LO1}(OR)] (OR=OiPr ( 4 ), (S)‐OCH(CH3)CO2iPr ( 5 )), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO1}]+[H2N{B(C6F5)3}2]? ( 9 ), a rare well‐defined, solvent‐free tin cation, was prepared in high yield. The X‐ray crystal structures of compounds 3 , 6 , and 8 were elucidated, and compounds 3 , 6 , 8 , and 9 were further characterized by 119Sn Mössbauer spectroscopy. In the presence of iPrOH, compounds 1 – 5 , 7 , and 9 catalyzed the well‐controlled, immortal ring‐opening polymerization (iROP) of L ‐lactide (L ‐LA) with high activities (ca. 150–550 molL?LA molSn?1 h?1) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L ‐LA)s were obtained in all cases. The activities of the heteroleptic pre‐catalysts 1 , 3 , and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre‐catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA‐PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on 1H and 119Sn{1H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4 , compound [Sn(OiPr)2]n 10 , and free {LO1}H in a dynamic temperature‐dependent and concentration‐dependent equilibrium. Upon further addition of L ‐LA, two active species were detected, [Sn{LO1}(OPLLA)] ( 12 ) and [Sn(OPLLA)2] ( 14 ), which were also in fast equilibrium. Based on assignment of the 119Sn{1H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic ( 1 , 3 , 7 ) or homoleptic ( 2 ) pre‐catalysts, both types of pre‐catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1 – 5 could not operate according to an activated‐monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L ‐LA and TMC promoted by industrially relevant homoleptic or heteroleptic SnII species.  相似文献   

2.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

3.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

4.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

5.
The synthesis of the first linear coordinated CuII complex Cu{N(SiMe3)Dipp}2 ( 1 Dipp=C6H5‐2,6Pri2) and its CuI counterpart [Cu{N(SiMe3)Dipp}2]? ( 2 ) is described. The formation of 1 proceeds through a dispersion force‐driven disproportionation, and is the reaction product of a CuI halide and LiN(SiMe3)Dipp in a non‐donor solvent. The synthesis of 2 is accomplished by preventing the disproportionation into 1 by using the complexing agent 15‐crown‐5. EPR spectroscopy of 1 provides the first detailed study of a two‐coordinate transition‐metal complex indicating strong covalency in the Cu?N bonds.  相似文献   

6.
The tetravalent germanium and tin compounds of the general formulae Ph*EX3 (Ph* = C6H3Trip‐2,6, Trip = C6H2iPr3‐2,4,6; E = Sn, X = Cl ( 1a ), Br ( 1b ); E = Ge, X = Cl ( 2 )) are synthesized by reaction of Ph*Li·OEt2 with EX4. The subsequent reaction of 1a , b with LiP(SiMe3)2 leads to Ph*EP(SiMe3)2 (E = Sn ( 3 ), Ge ( 4 )) and the diphosphane (Me3Si)2PP(SiMe3)2 by a redox reaction. In an alternative approach 3 and 4 are synthesized by using the corresponding divalent compounds Ph*ECl (E = Ge, Sn) in the reaction with LiP(SiMe3)2. The reactivity of Ph*SnCl is extensively investigated to give with LiP(H)Trip a tin(II)‐phosphane derivative Ph*SnP(H)Trip ( 6 ) and with Li2PTrip a proposed product [Ph*SnPTrip] ( 7 ) with multiple bonding between tin and phosphorus. The latter feature is confirmed by DFT calculations on a model compound [PhSnPPh]. The reaction with Li[H2PW(CO)5] gives the oxo‐bridged tin compound [Ph*Sn{W(CO)5}(μ‐O)2SnPh*] ( 8 ) as the only isolable product. However, the existence of 8 as the bis‐hydroxo derivative [Ph*Sn{W(CO)5}(μ‐OH)2SnPh*] ( 8a ) is also possible. The SnIV derivatives Ph*Sn(OSiMe3)2Cl ( 9 ) and [Ph*Sn(μ‐O)Cl]2 ( 10 ) are obtained by the oxidation of Ph*SnCl with bis(trimethylsilyl)peroxide and with Me3NO, respectively. Besides the spectroscopic characterization of the isolated products compounds 1a , 2 , 3 , 4 , 8 , and 10 are additionally characterized by X‐ray diffraction analysis.  相似文献   

7.
Anionic two‐coordinate complexes of first‐row transition‐metal(I) centres are rare molecules that are expected to reveal new magnetic properties and reactivity. Recently, we demonstrated that a N(SiMe3)2? ligand set, which is unable to prevent dimerisation or extraneous ligand coordination at the +2 oxidation state of iron, was nonetheless able to stabilise anionic two‐coordinate FeI complexes even in the presence of a Lewis base. We now report analogous CrI and CoI complexes with exclusively this amido ligand and the isolation of a [MnI{N(SiMe3)2}2]22? dimer that features a Mn?Mn bond. Additionally, by increasing the steric hindrance of the ligand set, the two‐coordinate complex [MnI{N(Dipp)(SiMe3)}2]? was isolated (Dipp=2,6‐iPr2‐C6H3). Characterisation of these compounds by using X‐ray crystallography, NMR spectroscopy, and magnetic susceptibility measurements is provided along with ligand‐field analysis based on CASSCF/NEVPT2 ab initio calculations.  相似文献   

8.
The reaction of CuCl, LiAs(SiMe3)2 and dppb (Bis(diphenylphosphino)butane) leads to the formation of ionic cluster complexes. Depending on the reaction conditions one can isolate [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As2(SiMe3)2}{As4(SiMe3)4}] ( 1 ) and [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As(SiMe3)2}2] ( 2 ). The same reaction of CuCl, dppm (Bis(diphenylphosphino)methane) and LiSb(SiMe3)2 leads to the neutral cluster complex [Cu10(Sb3)2(SbSiMe3)2(dppm)6] ( 3 ). The structures of 1‐3 have been solved by X‐ray single crystal analyses.  相似文献   

9.
α‐Diimine ligands react with the platinum(II) alkyl complexes [(Me2S)PtMe2]2 and (Me2S)2PtClMe to form (RDABR′)PtMe2 and (RDABR′)PtClMe (RDABR′=RN=CR′−CR′=NR; R=2,6‐Me2Ph, 2,6‐(CHMe2)2Ph, 3,5‐Me2Ph, 3,5‐(CF3)2Ph, C6H11; R′=Me, H). The oxidation of these complexes with Cl2, I2, N‐chlorosuccinimide, [PtCl6]2− and (TMEDA)PtMe2I2 has been investigated. Attempts to determine the oxidation potentials of the PtII complexes electrochemically yielded only irreversible one‐electron oxidations. However, a qualitative ordering of increasing difficulty of oxidation has been determined for the series (RDABR′)PtMe2<(RDABR′)PtClMe<(RDABR′)PtCl2≪(RDABR′)PtMe(solvent)]+. The oxidation proceeds via a two‐electron inner‐sphere electron transfer from a bridged binuclear intermediate. The oxidation of (RDABR′)PtMe2 by (TMEDA)PtMe2I2 exhibits characteristic third‐order kinetics, first‐order each in [PtII], [PtIV] and [I]. Oxidation by a one‐electron process in MeCN solution results in a rapid subsequent disproportionation to PtIIMe and PtIVMe3 cations with MeCN occupying the fourth or sixth coordination sites. Single‐crystal X‐ray structure determinations for [(2,6‐Me2PhDABMe)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) and [(CyDABH)PtMe3(MeCN)]+[PtCl6]0.5(MeCN) are reported.  相似文献   

10.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

11.
The hexachalcogenodistannates K6[SnIII2Se6] or Li4[SnIV2Te6]·8en were recently reported to simultaneously act as mild oxidants and chalcogenide sources in reactions with CoCl2/LiCp* (Cp* = pentamethylcyclopentadienide) while the Sn—E (E = Se, Te) fragment is not kept in the products, e.g. [(Cp*Co)3(μ3‐Se)2], [(Cp*Co)3(μ3‐Se)2][Cl2Co(μ2‐Cl)2Li(thf)2] or [(Cp*Co)4(μ3‐Te)4]. In search of related reagents with possibly different reaction behavior, we isolated and crystallographically characterized isotypic compounds [enH]4[SnIV2Se6]�en ( 1 ), and [enH]4[SnIV2Te6en ( 2 ) (en = 1, 2‐diaminoethane), that result from an uncommon disproportion/re‐arrangement reaction: distannate(III) K6[Sn2E6] (E = Se, Te) was reacted with en·2HCl to yield 1 or 2 under disproportion of SnIII to SnII and SnIV. Another pathway was necessary to synthesize the respective but solvent‐free thiostannate [enH]4 [SnIV2S6] ( 3 ), since the phase “K6[Sn2S6]” is unknown. This second method started out from SnCl4·2THF and S(SiMe3)2 in en solution. However, using E(SiMe3)2 (E = Se, Te) instead of S(SiMe3)2, 1 and 2 are also obtained this way. 1—3 are the first chalcogenostannates that exhibit exclusively [enH]+ counterions. The compounds were characterized by means of X‐ray crystallography and NMR spectroscopy. They seem to be suitable for reactions towards group 8‐10 metal complexes. Preliminary experiments indicate that the binary anions 1 — 3 coordinated by 1‐aminoethylammonium ions react more slowly compared to the anionic phases tested until now.  相似文献   

12.
The reaction of [(ArN)2MoCl2] · DME (Ar = 2,6‐i‐Pr2C6H3) ( 1 ) with lithium amidinates or guanidinates resulted in molybdenum(VI) complexes [(ArN)2MoCl{N(R1)C(R2)N(R1)}] (R1 = Cy (cyclohexyl), R2 = Me ( 2 ); R1 = Cy, R2 = N(i‐Pr)2 ( 3 ); R1 = Cy, R2 = N(SiMe3)2 ( 4 ); R1 = SiMe3, R2 = C6H5 ( 5 )) with five coordinated molybdenum atoms. Methylation of these compounds was exemplified by the reactions of 2 and 3 with MeLi affording the corresponding methylates [(ArN)2MoMe{N(R1)C(R2)N(R1)}] (R1 = Cy, R2 = Me ( 6 ); R1 = Cy, R2 = N(i‐Pr)2 ( 7 )). The analogous reaction of 1 with bulky [N(SiMe3)C(C6H5)C(SiMe3)2]Li · THF did not give the corresponding metathesis product, but a Schiff base adduct [(ArN)2MoCl2] · [NH=C(C6H5)CH(SiMe3)2] ( 8 ) in low yield. The molecular structures of 7 and 8 are established by the X‐ray single crystal structural analysis.  相似文献   

13.
The first thermally robust Ge II −Sn II compound 1 and the structurally characterized SnII-SnII analogue 2 , which maintain their structural integrity in solution, were obtained by treating MAr2 (M=Ge, Sn; Ar=2,6-(Me2N)2C6H3) with Sn[1,8-(NR2)2C10H6] (R=CH2tBu). On the basis of structural and spectroscopic data, the M−Sn bond is regarded as the interaction of a MAr2 donor with an Sn[1,8-(NR2)2C10H6] acceptor.  相似文献   

14.
An alternative two-step synthesis of the previously reported bis(diphenylphosphinimino)methane [CH2(Ph2P = NC6H3iPr2-2,6)2] involving bromine oxidation of dppm and metathesis with 2,6-diisopropylaniline is described. [CH2(Ph2PNC6H3iPr2-2,6)2] is readily deprotonated by the transition metal silylamides [M{N(SiMe3)2}2] (M = Mn, Fe and Co) to provide a series of exclusively three-coordinate derivatives [{CH(Ph2PNC6H3iPr2-2,6)2M{N(SiMe3)2}] which have been characterised by elemental analysis, magnetic measurements and, in the case of the Fe derivative, X-ray structural analysis. Reactivity studies have shown that even such sterically demanding bis(phosphinimino)methanide ligands are prone to protonolysis and reductive [P(V) to P(III)] degradation which limits their utility as stable platforms for further M(II) derivitisation.  相似文献   

15.
Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O ( 1 ). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri‐sodium salt Na3[Ce(oda)3]·9H2O ( 2 ) is isolated. Formation of a tri‐ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O ( 3 ). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1 . However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] ( 4 ). Each of these complexes exhibit a 3‐D network structure having a common nine‐coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1 , six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2 , displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen‐bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2‐D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.  相似文献   

16.
The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

17.
By using alternating‐current electrochemical synthesis, crystals of the CuIπ‐complexes bis(1‐allyl‐2‐amino­pyridinium) di‐μ‐chloro‐bis­[chloro­copper(I)], (C8H11N2)2[Cu2Cl4] or [H2NC5H4NC3H5][CuCl2], and bis(1‐allyl‐2‐amino­pyridinium) di‐μ‐(chloro/bromo)‐bis­[(chloro/bromo)copper(I)], (C8H11N2)2[Cu2Br2.2Cl1.8] or [H2NC5H4NC3H5][CuBr1.10Cl0.90], have been obtained and structurally investigated. In each of the isostructural (isomorphous) compounds, the distorted tetrahedral Cu environment involves three halide atoms and the C=C bond of the ligand. Both compounds reside on inversion centres, and the dimeric [Cu2X4·2H2NC5H4NC3H5] units are bonded into a three‐dimensional structure by N—H⋯X hydrogen bonds. The Br content in the terminal X1 position is much higher than that in the bridged X2 site.  相似文献   

18.
The reduction of N,C,N‐chelated bismuth chlorides [C6H3‐2,6‐(CH?NR)2]BiCl2 [where R=tBu ( 1 ), 2′,6′‐Me2C6H3 ( 2 ), or 4′‐Me2NC6H4 ( 3 )] or N,C‐chelated analogues [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]BiCl2 ( 4 ) and [C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]BiCl2 ( 5 ) is reported. Reduction of compounds 1 – 3 gave monomeric N,C,N‐chelated bismuthinidenes [C6H3‐2,6‐(CH?NR)2]Bi [where R=tBu ( 6 ), 2′,6′‐Me2C6H3 ( 7 ) or 4′‐Me2NC6H4 ( 8 )]. Similarly, the reduction of 4 led to the isolation of the compound [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]Bi ( 9 ) as an unprecedented two‐coordinated bismuthinidene that has been structurally characterized. In contrast, the dibismuthene {[C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]Bi}2 ( 10 ) was obtained by the reduction of 5 . Compounds 6 – 10 were characterized by using 1H and 13C NMR spectroscopy and their structures, except for 7 , were determined with the help of single‐crystal X‐ray diffraction analysis. It is clear that the structure of the reduced products (bismuthinidene versus dibismuthene) is ligand‐dependent and particularly influenced by the strength of the N→Bi intramolecular interaction(s). Therefore, a theoretical survey describing the bonding situation in the studied compounds and related bismuth(I) systems is included. Importantly, we found that the C3NBi chelating ring in the two‐coordinated bismuthinidene 9 exhibits significant aromatic character by delocalization of the bismuth lone pair.  相似文献   

19.
Reduction of the cationic GeII complex [dimpyrGeCl][GeCl3] (dimpyr=2,6‐(ArN=CMe)2NC5H3, Ar=2,6‐iPr2C6H3) with potassium graphite in benzene affords an air sensitive, dark green compound of Ge0, [dimpyrGe], which is stabilized by a bis(imino)pyridine platform. This compound is the first example of a complex of a zero‐valent Group 14 element that does not contain a carbene or carbenoid ligand. This species has a singlet ground state. DFT studies revealed partial delocalization of one of the Ge lone pairs over the π*(C?N) orbitals of the imines. This delocalization results in a partial multiple‐bond character between the Ge atom and imine nitrogen atoms, a fact supported by the X‐ray crystallography and IR spectroscopy data.  相似文献   

20.
Tripodal Bis(2,6‐iminophosphoranyl)pyridine Ligands: Iron and Cobalt Complexes with a Potential in Ethene Polymerisation By Staudinger Reaction of bis‐2,6‐diphenylphosphanyl‐pyridine with aryl‐, alkyl‐ and silylazides tripodal ligands L = 2,6‐(Ph2P=NR)2C5H3N (R = Ph 1 a , Mes 1 b , Ad  1 c , SiMe3 1 d ) are synthesized. The reaction of ligand 1 b  with equimolar amounts of [CoCl2(THF)2] and [FeCl2(THF)1.5] in THF does not lead to the expected neutral complexes [(k3‐L)MCl2] but to coordination compounds of the composition L2(CoCl2)3 ( 2 a ) und L(FeCl2)2 ( 3 ). By using acetonitrile as solvent or by crystallisation of 2 a from hot acetonitrile the cationic complex [(k3‐L)CoCl(MeCN)]Cl ( 2 b ) is formed as a second product. The molecular structure 2 b has been characterized by an X‐ray single crystal structure analysis (triclinic, P1, Z = 2, a = 1299.8(1), b = 1488.8(2), c = 1674.2(2) pm, α = 82.911(13)°, β = 76.715(12)°, γ = 72.758(11)°). A preliminary test with 3 shows, that coordination compounds of the ligand system introduced here have potential as catalysts in methyl alumoxane mediated ethene polymerisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号