首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Molecular mechanics methods have been used in order to find the conformations of various syndiotactic polymers in crystals. Three different classes of polymers have been examined: i) polyolefins, such as poly(propylene), polystyrene, poly(1‐butene) and poly(1,2‐butadiene); ii) polydienes, such as cis‐1,4‐poly(1,3‐pentadiene); iii) alternating copolymers of carbon monoxide with styrene or styrene derivatives. The presence of conformational polymorphism in some of the studied polymers is predicted and explained by maps and minimizations of the conformational energy. The calculated internal parameters and chain axis repeats of all the considered polymers result in very good agreement with X‐ray experimental data reported in literature. The role of intramolecular nonbonded interactions in determining the conformations of the polymer chains is thoroughly discussed.  相似文献   

2.
The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post‐polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion‐functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main‐chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC‐based polymers.  相似文献   

3.
Two alternating poly[3‐(hex‐1‐enyl)thiophene‐co‐thiophene]s, Pa (with 77% trans‐isomer and 23% cis‐isomer) and Pb (with 100% trans‐isomer), were synthesized by the coupling of 2,5‐dibromo‐3‐hex‐1‐enyl‐thiophene to 2,5‐bis(tributylstannyl)thiophene via a Stille reaction and compared with poly(3‐hexylthiophene‐co‐thiophene) ( P1 ) to study the effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of the polymers. From P1 to Pb and to Pa , the ultraviolet–visible absorption peaks of the polymers were slightly redshifted, and their electrochemical bandgaps decreased by 0.05–0.1 eV. X‐ray diffraction analysis indicated that Pa had a better lamellar structure than Pb . The hole mobilities of the three polymers, determined with the space‐charge‐limited current model, were 5.23 × 10?6 ( P1 ), 2.34 × 10?4 ( Pb ), and 7.02 × 10?4 cm2/V s ( Pa ). The power conversion efficiencies (PCEs) of polymer solar cells based on the three polymers were 0.87 ( P1 ), 1.16 ( Pb ), and 1.70% ( Pa ). The increase in the hole mobility and PCE revealed the important effect of changing the carbon(α)–carbon(β) single bond into a carbon–carbon double bond on the properties of polythiophene derivatives containing 3‐alkylthiophene. The strategy used in this work enlarges the thinking to obtain novel, efficient donor polymers for optoelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 629–638, 2007  相似文献   

4.
Burning rate catalysts are of great importance in solid composite propellants for their unique property of accelerating combustion speed. Among various kinds of burning rate catalysts, ferrocene and its derivatives exhibit excellent catalytic effects and have become the most widely used burning rate catalysts. However, these simple ferrocenyl compounds trend to migrate in solid composite propellants during storage, which causes great damage to the propellants, equipment and environment and can even affect personal safety. The exploration of novel anti‐migratory ferrocene‐based compounds has become an advanced research hotspot in the field of burning rate catalysis. This review focuses on recent progress on the synthesis and catalytic properties of ferrocene‐based polymers and ferrocene derivatives as burning rate catalysts. Two main aspects of anti‐migratory exploration, i.e. synthesis of ferrocene‐based polymers and modification of the side groups of ferrocene, are summarized. Ferrocene‐based polymers can be obtained via condensation polymerization, addition polymerization, ring‐opening polymerization, polymer reactions, etc. Ferrocenyl compounds with active groups and ferrocene‐based metal coordination compounds were developed instead of the methods of lengthening the carbon chain of side groups and improving molecular polarity. Also, possible mechanisms of burning rate catalytic activity and migration are discussed and analyzed. Finally, the key points of the development of ferrocene‐based burning rate catalysts and solid composite propellants are proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This article covers precise syntheses of well‐defined chain‐end and in‐chain functionalized polymers, multi‐functionalized polymers with a definite number of functional groups, star‐branched and graft polymers by recently developed methodologies using specially designed 1,1‐diphenylethylene (DPE) derivatives. The DPE derivatives include various substituted DPE derivatives with functional groups and their derivatives, DPE‐functionalized DPE derivatives, and well‐defined DPE‐functionalized macromonomers. The synthetic utility and importance of these DPE derivatives are described via such polymer syntheses.  相似文献   

6.
Optically active poly(m‐phenylene)s substituted with chiral oxazoline derivatives have been synthesized by the nickel‐catalyzed Yamamoto coupling reaction of optically active (S)‐4‐benzyl‐2‐(3,5‐dihalidephenyl)oxazoline derivatives (X = Br or I). The structures and chiroptical properties of the polymers were characterized by spectroscopic methods and thermal gravimetric analyses. The polymers showed higher absolute optical specific rotation values than their corresponding monomer, and showed a Cotton effect at transition region of conjugated main chain. The optical activities of the polymers should be attributed to the higher order structure such as helical conformations. Moreover, the helical conformation could be induced by addition of metal salts into polymer solutions. The polymers showed good thermal stabilities, which was attributable to the oxazoline side chains. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
A series of 10 new poly(heteroarylene methylenes) containing one pyrrole or thiophene ring alternating with a carbon atom in the main chain were synthesized and characterized. The polymers which were synthesized in the air were found to be partially dehydrogenated by the oxygen, that is, the bridge carbon atoms between pyrrole or thiophene rings were partially sp3 atoms and partially sp2 atoms. However the polymers which were synthesized in the flowing nitrogen atmosphere were found to be deoxidized, that is the bridge atoms were sp3 atoms. The deoxidized polymers could be oxidatively dehydrogenated with tetrchlorobenzoquinone. These polymers are useful model systems to investigate the effect of conjugation length on the electronic and optical properties of conjugated polymers. Third‐order optical non‐linearities of the reulting polymers were studied by z‐scan techniques. The results show that the reulting polymers exhibited large third‐order optical non‐linear susceptibilities as large as 10?8 esu. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Heterotelechelic polymers were synthesized by a kinetic telechelic ring‐opening metathesis polymerization method relying on the regioselective cross‐metathesis of the propagating Grubbs’ first‐generation catalyst with cinnamyl alcohol derivatives. This procedure allowed the synthesis of hetero‐bis‐end‐functional polymers in a one‐pot setup. The molecular weight of the polymers could be controlled by varying the ratio between cinnamyl alcohol derivatives and monomer. The end functional groups can be changed using different aromatically substituted cinnamyl alcohol derivatives. Different monomers were investigated and the presence of the functional groups was shown by NMR spectroscopy and MALDI‐ToF mass spectrometry. Labeling experiments with dyes were conducted to demonstrate the orthogonal addressability of both chain ends of the heterotelechelic polymers obtained.  相似文献   

9.
Novel ladder‐type conjugated polymers, fused poly (benzopentalene) derivatives, were synthesized from the readily accessible 1,4‐dibromo‐2,5‐diethynylbenzene derivatives by the Pd‐catalyzed self‐polycondensation in one‐step with high yields. The low solubility of the ladder structure was suggested when the triisopropylsilyl substituents were selected. However, when longer alkyl chains were introduced into the peripheral moieties, such as the dialkylanilino (DAA) and alkyloxyphenyl groups, a high solubility was achieved and the number‐average molecular weight (Mn) reached 18,000. The UV‐Vis absorption spectral shapes of the polymers were similar to the reported dibenzopentalene derivatives, except for the bathochromically shifted end absorptions. This result suggests an extension of the π‐conjugated systems due to the polymerization. Moreover, the almost defect‐free structure of the ladder‐type polymers was confirmed by the quantitative tetracyanoethylene (TCNE) addition to the DAA‐activated alkynes. The titration experiments of TCNE to the polymers revealed the number of terminal alkynes, which enabled us to calculate the molecular weight of the polymers. The calculated molecular weight was consistent with that determined by GPC. After the TCNE addition, the polymer band gaps reasonably decreased as suggested by the UV‐Vis‐NIR absorption and electrochemical measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
New crosslinkable polymers with a nonlinear optical (NLO) active chromophore as a pendant group were synthesized by condensation chain polymerization via palladium‐catalyzed carbon–carbon coupling reactions. The polymerization yields were almost quantitative between the diiodobenzene (DIB) and diethyldipropargyl malonate (DEDPM) or 4‐(dimethylamino)‐4′‐(6‐dipropargylacetoxypropylsulfonyl)stilbene (DASS‐6) monomers. To improve the molecular weight and mechanical properties of the NLO active polymer, we carried out the copolymerization with DIB and DASS‐6 with various feed ratios of DEDPM. The resulting polymers were soluble in organic solvents and spun‐cast onto indium tin oxide‐coated glass substrates to make thin films. The molecular structures of the resulting polymers were characterized with various instrumental methods to confirm the carbon–carbon coupling reactions between the DIB and diacetylene monomers. The absorption of the ultraviolet–visible spectrum of the resulting polymers was drastically reduced after thermal curing at 160 °C because of the crosslinking of the reactive acetylene group in the polymer backbone. The electrooptic coefficient (r33) measured at 1.3 μm ranged from 7 to 15 pm/V. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4025–4034, 2001  相似文献   

11.
Carboxylic acid derivatives containing acyl halides, anhydrides, esters, amides and acyl nitriles are highly appealing electrophiles in transition‐metal‐catalyzed carbon‐carbon bond‐forming reactions due to their ready availability and low cost, which can provide divergent transformations of carboxylic acids into other value‐added products. In this Minireview, we focus on the recent advances of decarbonylative transformations of carboxylic acid derivatives in carbon‐carbon bond formations using Ni or Pd catalysts. A series of reaction types, product classifications and reaction pathways are presented herein, which show the advantageous features of carboxylic acid derivatives as alternative to aryl or alkyl halides in terms of reactivity and compatibility. The well‐accepted mechanism of nickel‐ or palladium‐catalyzed decarbonylative transformations involves initial oxidative addition of carboxylic acid derivatives, followed by decarbonylation or transmetalation (or insertion), and reductive elimination to generate the products, thereby regenerating the catalysts.  相似文献   

12.
New silicone‐containing polymers with crosslinkable units have been synthesized by hydrosilation polymerization in both toluene and supercritical carbon dioxide (70°C, 3000 psi) catalyzed by platinum‐divinyltetramethyldisiloxane (Pt‐DVTMS). It was found that high molecular polymers were obtained in both toluene and supercritical carbon dioxide. The polymers were characterized by FTIR, NMR, GPC, TGA, and DSC. The molecular weights of these polymers ranged from 9000 to 39,000. With further hydrolysis and thermal curing, the molecular weight can be increased significantly. Comparison of the properties between reactions in toluene versus supercritical carbon dioxide indicated that the green solvent is a usable alternative for hydrosilation polymerization. The new polymers synthesized in either toluene or supercritical carbon dioxide are thermally stable, ranged from 350 to 488°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A new type of methacrylate monomer, [2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate (APEMA), was synthesized. The oxime, 2,4‐dinitrophenylhydrazone, and thiosemicarbazone derivatives of poly{[2‐oxo‐2‐(4‐acetyl) phenyl amino] ethylene methacrylate} [poly(APEMA)] were prepared with hydroxylamine hydrochloride, 2,4‐dinitrophenylhydrazine, and thiosemicarbazone hydrochloride, respectively. The radical homopolymerization of APEMA was performed at 65 °C in a 1,4‐dioxane solution with benzoyl peroxide as an initiator. The monomer and its homopolymer were characterized with Fourier transform infrared and NMR techniques. The thermal stabilities of poly(APEMA) and its derivatives were investigated with thermogravimetric analysis and differential scanning calorimetry. The ultraviolet stability of the polymers were compared. The solubility and inherent viscosity of the polymers were also determined. The number‐average and weight‐average molecular weights and polydispersity index of the polymers were determined with gel permeation chromatography. The antibacterial and antifungal effects of the monomer and the polymer and its derivatives were also investigated on various bacteria and fungi. The activation energies of the thermal degradation of the polymers were calculated with the Ozawa method. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3157–3169, 2004  相似文献   

14.
As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host–guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long‐term stability, reliability, cost‐efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature.  相似文献   

15.
A novel molecularly imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was synthesized using curcumin as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross‐linker. The phenyl groups contained in the magnetic imprinted polymers acted as the assisting functional monomer. The magnetic imprinted polymers were characterized by scanning electron microscopy, Fourier‐transform infrared spectroscopy and vibrating sample magnetometry. Adsorption studies demonstrated that the magnetic imprinted polymers possessed excellent selectivity toward curcumin with a maximum capacity of 16.80 mg/g. Combining magnetic extraction and high‐performance liquid chromatography technology, the magnetic imprinted polymer based on magnetic phenyl‐modified multi‐walled carbon nanotubes was applied for the rapid separation and enrichment of curcumin from ginger powder and kiwi fruit root successfully.  相似文献   

16.
Acyclic diene metathesis (ADMET) polymerization has been used in the synthesis of telechelic materials using alkoxy‐functionalized carbosiloxane or oligo(oxyethylene)‐based polymers, varying from internal to terminal cured materials or the combination of them. Previous investigations demonstrated that introduction of chain‐end crosslinking improves the stress–strain behavior of such materials. A series of saturated and unsaturated carbosiloxane and oligo(oxyethylene)‐based polymers were synthesized by ADMET polymerization using silacyclobutane as chain‐end, thermally induced crosslinker. The carbosiloxane derivatives presented pure amorphous behavior, whereas the oligo(oxyethylene) polymers were semicrystalline. The thermal curing process was monitored by differential scanning calorimetry via the exotherm between 160 and 210 °C. Mechanical properties on thermoset polymers were measured, where cured polymers showed moduli from 0.6 to 9.3 MPa, tensile strengths from 0.3 to 1.0 MPa, and elongations from 12 to 76%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
《Electroanalysis》2005,17(12):1025-1034
A series of modified electrodes were prepared both via solvent evaporation and electrochemical cycling of azobenzene and derivatives and various quinones and assessed for their suitability as oxygen reduction electrocatalysts and sonoelectrocatalysts. Glassy carbon electrodes were modified via solvent evaporation with 1,2‐dihydroxyanthraquinone and 1,2‐diazonium‐9,10‐anthraquinone while edge plane and basal plane pyrolytic graphite electrodes were modified by the same procedure with 9,10‐phenanthraquinone. The stability of the attached moiety was accessed in each case under ultrasound. For comparison the same electrode substrates were modified with 9,10‐phenanthraquinone by electrochemical cycling and also exposed to ultrasound. The observed results suggest the use of the glassy carbon electrodes modified with azobenzene and derivatives via solvent evaporation as the optimal carbon based sonoelectrocatalysts for oxygen reduction in term of stability under insonation and high catalytic rate.  相似文献   

18.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

19.
The story of the outset and the growth of radical polyaddition of bisperfluoroisopropenyl derivatives [CF2?C(CF3)? R? C(CF3)? CF2] with several organic compounds possessing carbon–hydrogen bonds is described. The reaction afforded novel fluorinated polymers bearing such organic segments in polymer main chains as 1,4‐dioxane, diethyl ether, dimethoxyethane, 18‐crown‐6, triethylamine, glutaraldehyde, and alkanes which have never been supposed as direct starting compounds for preparation of polymers. The facile method for preparation of fluorinated hybrid polymers bearing alkylsilyl groups was developed with diethoxydimethylsilane and silsesquioxanes. Taking advantage of the high reactivity of the perfluoroisopropenyl group as a radical acceptor, self‐polyaddition and cyclopolymerization were investigated. Triethysilyl perfluoroisopropenyl ether [CF2? C(CF3)? O? Si(C2H5)3] was proved to be the most probable candidate for self‐polyaddition. Cyclopolymerization of perfluoroisopropenyl vinylacetate [CF2?C(CF3) OCO? CH2CH? CH2] was investigated to afford polymers possessing five‐membered‐ring units in main chains. The interconversion of the unstable fluorinated carbon radical and the stable hydrocarbon radical had an important role in the reaction. The radical addition reaction presented herein may be developed for preparation of a wide variety of novel fluorinated polymers and organic compounds possessing functional groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4101–4125, 2004  相似文献   

20.
Treatment of 5,5′‐dilithio‐2,2′‐dithiophene with (dimethylamino)methylsily bis(triflate)‐ or α, ω‐bis(triflate)‐substituted trisilanes gave poly[5,5′‐(silylene)‐2,2′‐dithienylene]s in high yields. The amino–silyl bond was cleaved selectively by triflic acid, leading to triflate‐substituted derivatives. Conversion of these compounds with nucleophiles gave other functionalized polymers. Platinum‐catalyzed hydrosilylation reactions between silicon–vinyl and silicon–hydrogen derivatives result in polymer networks which may serve as interesting preceramic materials. The structures of the polymers were proven by NMR spectroscopy (29Si, 13C, 1H). Results of thermal gravimetric analysis (TGA), UV spectrometry and conductivity measurements are given. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号