首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quick capacity loss due to the polysulfide shuttle effects and poor rate performance caused by low conductivity of sulfur have always been obstacles to the commercial application of lithium sulfur batteries. Herein, an in-situ doped hierarchical porous biochar materials with high electron-ion conductivity and adjustable three-dimensional (3D) macro-meso-micropore is prepared successfully. Due to its unique physical structure, the resulting material has a specific surface area of 2124.9 m2 g−1 and a cumulative pore volume of 1.19 cm3 g−1. The presence of micropores can effectively physically adsorb polysulfides and mesopores ensure the accessibility of lithium ions and active sites and give the porous carbon material a high specific surface area. The large pores provide channels for the storage of electrolyte and the transmission of ions on the surface of the substrate. The combined effect of these three kinds of pores and the N doping formed in-situ can effectively promote the cycle and rate performance of the battery. Therefore, prepared cathode can still reach a reversible discharge capacity of 616 mAh g−1 at a rate of 5 C. After 400 charge–discharge cycles at 1 C, the reversible capacity is maintained at 510.0 mAh g−1. This new strategy has provided a new approach to the research and industrial-scale production of adjustable hierarchical porous biochar materials.  相似文献   

2.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

3.
Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon‐nanotube‐interpenetrated mesoporous nitrogen‐doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g?1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer‐sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm?2) with a high sulfur loading of approximately 5 mg cm?2, which is ideal for practical applications of the lithium–sulfur batteries.  相似文献   

4.
Rational design of hollow micro‐ and/or nano‐structured cathodes as sulfur hosts has potential for high‐performance lithium‐sulfur batteries. However, their further commercial application is hindered because infusing sulfur into hollow hosts is hard to control and the interactions between high loading sulfur and electrolyte are poor. Herein, we designed hierarchical porous hollow carbon nanospheres with radially inwardly aligned supporting ribs to mitigate these problems. Such a structure could aid the sulfur infusion and maximize sulfur utilization owing to the well‐ordered pore channels. This highly organized internal carbon skeleton can also enhance the electronic conductivity. The hollow carbon nanospheres with further nitrogen‐doping as the sulfur host material exhibit good capacity and excellent cycling performance (0.044 % capacity degradation per each cycle for 1000 cycles).  相似文献   

5.
Lithium–sulfur (Li–S) batteries are considered to be one of the most promising energy storage systems owing to their high energy density and low cost. However, their wide application is still limited by the rapid capacity fading. Herein, polydopamine (PDA)-coated N-doped hierarchical porous carbon spheres (NPC@PDA) are reported as sulfur hosts for high-performance Li-S batteries. The NPC core with abundant and interconnected pores provides fast electron/ion transport pathways and strong trapping ability towards lithium polysulfide intermediates. The PDA shell could further suppress the loss of lithium polysulfide intermediates through polar–polar interactions. Benefiting from the dual function design, the NPC/S@PDA composite cathode exhibits an initial capacity of 1331 mAh g−1 and remains at 720 mAh g−1 after 200 cycles at 0.5 C. At the pouch cell level with a high sulfur mass loading, the NPC/S@PDA composite cathode still exhibits a high capacity of 1062 mAh g−1 at a current density of 0.4 mA cm−2.  相似文献   

6.
A three‐dimensional (3D) hierarchical MOF‐on‐reduced graphene oxide (MOF‐on‐rGO) compartment was successfully synthesized through an in situ reduced and combined process. The unique properties of the MOF‐on‐rGO compartment combining the polarity and porous features of MOFs with the high conductivity of rGO make it an ideal candidate as a sulfur host in lithium–sulfur (Li‐S) batteries. A high initial discharge capacity of 1250 mAh g?1 at a current density of 0.1 C (1.0 C=1675 mAh g?1) was reached using the MOF‐on‐rGO based electrode. At the rate of 1.0 C, a high specific capacity of 601 mAh g?1 was still maintained after 400 discharge–charge cycles, which could be ascribed to the synergistic effect between MOFs and rGO. Both the hierarchical structures of rGO and the polar pore environment of MOF retard the diffusion and migration of soluble polysulfide, contributing to a stable cycling performance. Moreover, the spongy‐layered rGO can buffer the volume expansion and contraction changes, thus supplying stable structures for Li‐S batteries.  相似文献   

7.
Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field‐emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super‐high lithium‐storage capacity of 1580 mAh g?1 and a satisfactory cycling performance in lithium–sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene‐based nanocomposites can significantly improve the electrochemical performance of lithium–sulfur batteries.  相似文献   

8.
While great progress has been achieved in the synthesis of ordered mesoporous carbons in the past decade, it still remains a challenge to prepare highly graphitic frameworks with ordered mesoporosity and high surface area. Reported herein is a simple synthetic methodology, based on the conversion of self‐assembled superlattices of Fe3O4 nanocrystals, to fabricate highly ordered mesoporous graphene frameworks (MGFs) with ultrathin pore walls consisting of three to six stacking graphene layers. The MGFs possess face‐centered‐cubic symmetry with interconnected mesoporosity, tunable pore width, and high surface area. Because of their unique architectures and superior structural durability, the MGFs exhibit excellent cycling stability and rate performance when used as anode materials for lithium‐ion batteries, thus retaining a specific capacity of 520 mAh g?1 at a current density of 300 mA g?1 after 400 cycles.  相似文献   

9.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

10.
Although lithium–oxygen batteries possess a high theoretical energy density and are considered as promising candidates for next‐generation power systems, the enhancement of safety and cycling efficiency of the lithium anodes while maintaining the high energy storage capability remains difficult. Here, we overcome this challenge by cross‐stacking aligned carbon nanotubes into porous networks for ultrahigh‐capacity lithium anodes to achieve high‐performance lithium–oxygen batteries. The novel anode shows a reversible specific capacity of 3656 mAh g?1, approaching the theoretical capacity of 3861 mAh g?1 of pure lithium. When this anode is employed in lithium–oxygen full batteries, the cycling stability is significantly enhanced, owing to the dendrite‐free morphology and stabilized solid–electrolyte interface. This work presents a new pathway to high performance lithium–oxygen batteries towards practical applications by designing cross‐stacked and aligned structures for one‐dimensional conducting nanomaterials.  相似文献   

11.
Core–shell hierarchical porous carbon spheres (HPCs) were synthesized by a facile hydrothermal method and used as host to incorporate sulfur. The microstructure, morphology, and specific surface areas of the resultant samples have been systematically characterized. The results indicate that most of sulfur is well dispersed over the core area of HPCs after the impregnation of sulfur. Meanwhile, the shell of HPCs with void pores is serving as a retard against the dissolution of lithium polysulfides. This structure can enhance the transport of electron and lithium ions as well as alleviate the stress caused by volume change during the charge–discharge process. The as‐prepared HPC‐sulfur (HPC‐S) composite with 65.3 wt % sulfur delivers a high specific capacity of 1397.9 mA h g?1 at a current density of 335 mA g?1 (0.2 C) as a cathode material for lithium–sulfur (Li‐S) batteries, and the discharge capacity of the electrode could still reach 753.2 mA h g?1 at 6700 mA g?1 (4 C). Moreover, the composite electrode exhibited an excellent cycling capacity of 830.5 mA h g?1 after 200 cycles.  相似文献   

12.
A carbon‐sulfur hybrid with pomegranate‐like core–shell structure, which demonstrates a high rate performance and relatively high cyclic stability, is obtained through carbonization of a carbon precursor in the presence of a sulfur precursor (FeS2) and a following oxidation of FeS2 to sulfur by HNO3. Such a structure effectively protects the sulfur and leaves enough buffer space after Fe3+ removal and, at the same time, has an interconnected conductive network. The capacity of the obtained hybrid is 450 mA h g?1 under the current density of 5 C. This work provides a simple strategy to design and prepare various high‐performance carbon‐sulfur hybrids for lithium‐sulfur batteries.  相似文献   

13.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

14.
A hierarchical fibrous SnO2/carbon nanocomposite composed of fine SnO2 nanocrystallites immobilized as a thin layer on a carbon nanofiber surface was synthesized employing natural cellulose substance as both scaffold and carbon source. It was achieved by calcination/carbonization of the as‐deposited SnO2‐gel/cellulose hybrid in an argon atmosphere. As being employed as an anode material for lithium‐ion batteries, the porous structures, small SnO2 crystallite sizes, and the carbon buffering matrix possessed by the nanocomposite facilitate the electrode–electrolyte contact, promote the electron transfer and Li+ diffusion, and relieve the severe volume change and aggregation of the active particles during the charge/discharge cycles. Hence, the nanocomposite showed high reversible capacity, significant cycling stability, and rate capability that are superior to the nanotubular SnO2 and SnO2 sol–gel powder counter materials. For such a composite with 27.8 wt % SnO2 content and 346.4 m2 g?1 specific surface area, a capacity of 623 mAh g?1 was delivered after 120 cycles at 0.2 C. Further coating of the SnO2/carbon nanofibers with an additional carbon layer resulted in an improved cycling stability and rate performance.  相似文献   

15.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

16.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

17.
制备了以十二烷基硫酸钠(SDS)为模板的介孔碳,并将介孔碳和单质硫采用熔融渗透法复合制得硫/介孔碳复合材料。SEM、TEM和BET结果显示介孔碳成直径约为500 nm的大小均一的球体,存在孔径为2 nm的微孔;单质硫充分填充在介孔碳的微孔中。以硫/介孔碳复合物作为锂硫电池正极材料时显示出高的电化学性能。初始放电容量高达1519 mAh·g-1,在200 mA·g-1的电流密度下充放电200个循环后依然能保持在835 mAh·g-1。硫/介孔碳复合材料的高倍率性能和优异的循环稳定性,源于介孔碳良好的导电性及其孔结构的固硫作用。  相似文献   

18.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

19.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

20.
Well‐confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium–sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as‐prepared composite material consists of graphene‐wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g?1 at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano‐network for use in lithium–sulfur rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号