首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

2.
A process which has just one jump, and whose time parameter is the positive quadrant [0, ∞] × [0, ∞], is considered. Following Merzbach, related stopping lines are introduced, and the filtration {Ft1,t23} considered in this paper is such that, modulo completion, the σ-field Ft1,t23 is the Borel field on the region
Lt1,t2={(s1,s2); 0?s1?t1or0?s2?t2}
, together with the atom which is the complement in Ω = [0, ∞]2 of Lt1,t2. Optional and predictable projections of related processes are defined, together with their dual projections, and an integral representation for martingales is obtained.  相似文献   

3.
A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic and chemical reaction models) can be obtained as solutions of equations of the form
XN(t)=x0+∑1NlY1N ∫t0 f1(XN(s))ds
where l∈Zt, the Y1 are independent Poisson processes, and N is a parameter with a natural interpretation (e.g. total population size or volume of a reacting solution).The corresponding deterministic model, satisfies
X(t)=x0+ ∫t0 ∑ lf1(X(s))ds
Under very general conditions limN→∞XN(t)=X(t) a.s. The process XN(t) is compared to the diffusion processes given by
ZN(t)=x0+∑1NlB1N∫t0 ft(ZN(s))ds
and
V(t)=∑ l∫t0f1(X(s))dW?1+∫t0 ?F(X(s))·V(s)ds.
Under conditions satisfied by most of the applied probability models, it is shown that XN,ZN and V can be constructed on the same sample space in such a way that
XN(t)=ZN(t)+OlogNN
and
N(XN(t)?X(t))=V(t)+O log NN
  相似文献   

4.
Two related almost sure limit theorems are obtained in connection with a stochastic process {ξ(t), ?∞ < t < ∞} with independent increments. The first result deals with the existence of a simultaneous stabilizing function H(t) such that (ξ(t) ? ξ(0))H(t) → 0 for almost all sample functions of the process. The second result deals with a wide-sense stationary process whose random spectral distributions is ξ. It addresses the question: Under what conditions does (2T)?1?TTX(t)X(t + τ)dt converge as T → ∞ for all τ for almost all sample functions?  相似文献   

5.
Let etSande?tT be (C0)-semigroups on a Banach space X. Their tensor product L(t) is defined by L(t)A = etSAetT (A?B(X)) and has the generator Δ formally of the form ΔA = SA ? AT. Under the assumption that {L(t); t ? 0} is bounded, we investigate the Abel limit and the Cesàro limit of L(t)A at ∞. If gWsu] denotes the set of operators A for which the Abel limit Ps(A) [resp. Pu(A)] exists in the strong [resp. uniform] operator topology, then
N(Δ)⊕R(Δ) = ωu ? ωs ? N(Δ) + R(Δ)
and the limit defines a projection Ps[Pu] from Ωs [resp. Ωu] onto N(Δ) with N(Δ) with R(Δ) = N(Pu) ? N(Pu) ? R(Δ). If, in addition, S and T are Hilbert space normal operators such that gq(S) ∩ gq(T) ≠ φ, then Ωu contains all compact operators.  相似文献   

6.
Let γт=(8(logTa-1T+log log T)π2aT)12, 0<aT?T<∞, and {W(t);0?t<∞} be a standard Wiener process. This exposition studies the almost sure behaviour of
inf0?t?T?aTsup0?s?aT γT|W(t+s)?W(t)| as T →∞
, under varying conditions on aT and T/aT. The following analogue of Lévy's modulus of continuity of a Wiener Process is also given:
limh→0inf0?t?1sup0?s?h(8 log h-1π2h)12|W(t+s)?W(t)| = a.s. 1.
and this may be viewed as the exact “modulus of non-differentiability” of a Wiener Process.  相似文献   

7.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

8.
Let Xn be an irreducible aperiodic recurrent Markov chain with countable state space I and with the mean recurrence times having second moments. There is proved a global central limit theorem for the properly normalized sojourn times. More precisely, if t(n)ink=1i?i(Xk), then the probability measures induced by {t(n)i/√n?√i}i?Ii being the ergotic distribution) on the Hilbert-space of square summable I-sequences converge weakly in this space to a Gaussian measure determined by a certain weak potential operator.  相似文献   

9.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

10.
Let Ωm be the set of partitions, ω, of a finite m-element set; induce a uniform probability distribution on Ωm, and define Xms(ω) as the number of s-element subsets in ω. We alow the existence of an integer-valued function n=n(m)(t), t?[0, 1], and centering constants bms, 0?s? m, such that
Z(m)(t)=s=0n(m)(t)(Xms?bms)s=0mbms
converges to the ‘Brownian Bridge’ process in terms of its finite-dimensional distributions.  相似文献   

11.
For a d-dimensional random field X(t) define the occupation measure corresponding to the level α by the Lebesgue measure of that portion of the unit cube over which X(t)?α. Denoting this by M[X, α], it is shown that for sample continuous Gaussian fields
P{M[X,α]>β}=exp{?12α2kβ(1+0(1))}
as α→∞, for a particular functional kβ. This result is applied to a variety of fields related to the planar Brownian motion, and for each such field we obtain bounds for kβ.  相似文献   

12.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

13.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

14.
Let Ω = {1, 0} and for each integer n ≥ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωnk = {(a1, a2, …, an)|(a1, a2, … , an) ? Ωnand Σi=1nai = k} for all k = 0,1,…,n. Let {Ym}m≥1 be a sequence of i.i.d. random variables such that P(Y1 = 0) = P(Y1 = 1) = 12. For each A in Ωn, let TA be the first occurrence time of A with respect to the stochastic process {Ym}m≥1. R. Chen and A.Zame (1979, J. Multivariate Anal. 9, 150–157) prove that if n ≥ 3, then for each element A in Ωn, there is an element B in Ωn such that the probability that TB is less than TA is greater than 12. This result is sharpened as follows: (I) for n ≥ 4 and 1 ≤ kn ? 1, each element A in Ωnk, there is an element B also in Ωnk such that the probability that TB is less than TA is greater than 12; (II) for n ≥ 4 and 1 ≤ kn ? 1, each element A = (a1, a2,…,an) in Ωnk, there is an element C also in Ωnk such that the probability that TA is less than TC is greater than 12 if n ≠ 2m or n = 2m but ai = ai + 1 for some 1 ≤ in?1. These new results provide us with a better and deeper understanding of the fair coin tossing process.  相似文献   

15.
Let {Zt} be an increasing Markov process on N n and {σ(k)} the corresponding sequence of jump times. Let the increments of Zt be i.i.d. with finite expectation and covariances, and let
E(σ(k+1)?σ(k)|Z0,Zσ(1),…Zσ(k)=hZσ(k)|Zσ(k)|?(|Zσ(k)|)?1
where h and ? are sufficiently smooth positive functions and ?Zt? = ∑nj=1Zt(j), Zt=(Zt(1),…,Zt(n)). While a linear f results in asymptotically exponential growth, a suitable class of sublinear f leads to a growth asymptotically at most that of a power. Covering both cases, we obtain analoga of the strong LLN, the CLT and LIL.  相似文献   

16.
This paper treats the quasilinear, parabolic boundary value problem uxx ? ut = ??(x, t, u)u(0, t) = ?1(t); u(l, t) = ?2(t) on an infinite strip {(x, t) ¦ 0 < x < l, ?∞ < t < ∞} with the functions ?(x, t, u), ?1(t), ?2(t) being periodic in t. The major theorem of the paper gives sufficient conditions on ?(x, t, u) for this problem to have a periodic solution u(x, t) which may be constructed by successive approximations with an integral operator. Some corollaries to this theorem offer more explicit conditions on ?(x, t, u) and indicate a method for determining the initial estimate at which the iteration may begin.  相似文献   

17.
Let {ξj(t), t ∈ [0, T]} j = 1, 2 be infinitely divisible processes with distinct Poisson components and no Gaussian components. Let X be the set of all real-valued functions on [0, T] which are not identically zero, and B be the σ-ring generated by the cylinder sets of ξj(t), j = 1, 2. Let μj be the measure on B induced by ξj(t).Necessary and sufficient conditions on the projective limits of the Levy-Khinchine spectral measures of the processes are found to make μ2 ? μ1, and a representation for the density 21 is obtained.  相似文献   

18.
Let {Xt; t = 1, 2,…} be a linear process with a location parameter θ defined by Xt ? θ = Σ0grZt?r where {Zt; t = 0, ±1,…} is a sequence of independent and identically distributed random variables, with EZ1δ < ∞ for some δ > 0. If δ ? 1 we assume further than E(Z1) = 0. Let η = δ if 0 < δ < 2, and η = 2 if δ ? 2. Then assume that Σ0grη < ∞. Consider the class of estimators θn given by θn = Σ1ncntXtwhere cnt is of the form cnt = Σp = 0sβnptp for some s ? 0. An attempt has been made to investigate the distributional properties of θn in large samples for various choices of βnp (0 ? p ? s), s, and the distribution of Z1 under the constraints Σ0rkgr = 0, 0 ? k ? q where q in an arbitrary integer, 0 ? q ? s.  相似文献   

19.
For the variance of stationary renewal and alternating renewal processes Nn(·) the paper establishes upper and lower bounds of the form
?B1?varN8(0,x–Aλx?B2(0<x<∞)
, where λ=EN8(0,1), with constants A, B1 and B2 that depend on the first three moments of the interval distributions for the processes concerned. These results are consistent with the value of the constant A for a general stationary point process suggested by Cox in 1963 [1].  相似文献   

20.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号