首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high reactivity of 6π‐electrocyclization in polar solvents has remained one of the important challenges for diarylethenes because of the emergence of a twisted intramolecular charge transfer (TICT) state at the excited state in such polar media, which usually quenches the photocyclization reaction. Herein we report on the preparation and highly efficient photocyclization of 2,3‐diarylbenzo[b]thiophenes with nonsymmetric side‐aryl units in a polar solvent. While the dithiazolylbenzo[b]thiophene showed a suppressed quantum yield of 6π‐electrocyclization of 54 % in methanol, the replacement of a thiazole unit with a thiophene ring led to a photon‐quantitative 6π‐cyclization reaction. The nonsymmetrical modification into the side‐aryl units was considered to enhance the CH/π interactions between side‐aryl units to support a photoreactive conformation in methanol. The stabilization of the photochromic reactive conformation is expected to suppress the formation of the TICT state at the excited state, leading to highly efficient photoreactivity.  相似文献   

2.
α,β‐Linked oligothiazoles with head‐to‐tail connectivity are presented as a new family of helical scaffolds. Combinations of palladium‐catalyzed cross‐coupling reactions at the 5‐ and 4‐positions of 2‐phenylthiazole led to the synthesis of oligo(2‐phenylthiazoles) with ortho linkages with a variety of defined sequences. The secondary structures of the α,β‐linked oligo(2‐phenylthiazoles) showed a clear dependence on their sequences. X‐ray crystallography of the trimer, tetramer, and hexamer with head‐to‐tail connection revealed the formation of a helical structure, which was stabilized by a combination of intramolecular forces, including interheteroatom (S???N), CH–π, and π–π interactions. The introduction of a chiral end‐group successfully led to the induction of chirality into the helical conformations. Programmable sequences for controlled geometries and photofunctions have been demonstrated through the manifold connection pathways in α,β‐linked oligothiazoles.  相似文献   

3.
Folding‐induced folding for the construction of artificial hybrid helices from two different kinds of aromatic sequences is described. Linear compounds 1 a , 1 b , and 2 , containing one aromatic amide trimer or pentamer and one or two aromatic 1,2,3‐triazole tetramers, have been designed and synthesized. The trimeric and pentameric amide segments are driven by intramolecluar N?H???F hydrogen bonding to adopt a folded or helical conformation, whereas the triazole segment is intrinsically disordered. In organic solvents of low polarity, the amide foldamer segment induces the attached triazole segment(s) to fold through intramolecular stacking, leading to the formation of hybrid helices. The helical conformation of these hybrid sequences has been confirmed by 1H and 19F NMR spectroscopy, UV/Vis spectroscopy, circular dichroism (CD) experiments, and theoretical calculations. It was found that the amide pentamer exhibits a stronger ability to induce the folding of the attached triazole segment(s) compared with that of the shorter trimer. Enantiomers (R)‐ 3 and (S)‐ 3 , which contain an R‐ or S‐(1‐naphthyl)ethylamino group at the end of a tetraamide segment, have also been synthesized. CD experiments showed that introduction of a chiral group caused the whole framework to produce a strong helicity bias. Density‐functional‐theory calculations on (S)‐ 3 suggested that this compound exists as a right‐handed (P) helix.  相似文献   

4.
Biologically relevant hydrophilic molecules rarely interact with hydrophobic compounds and surfaces in water owing to effective hydration. Nevertheless, herein we report that the hydrophobic cavity of a polyaromatic capsule, formed through coordination‐driven self‐assembly, can encapsulate hydrophilic oligo(lactic acid)s in water with relatively high binding constants (up to Ka=3×105 m −1). X‐ray crystallographic and ITC analyses revealed that the unusual host–guest behavior is caused by enthalpic stabilization through multiple CH–π and hydrogen‐bonding interactions. The polyaromatic cavity stabilizes hydrolyzable cyclic di(lactic acid) and captures tetra(lactic acid) preferentially from a mixture of oligo(lactic acid)s even in water.  相似文献   

5.
The interplay between cation–π and coinage‐metal–oxygen interactions are investigated in the ternary systems N???PhCCM???O (N=Li+, Na+, Mg2+; M=Ag, Au; O=water, methanol, ethanol). A synergetic effect is observed when cation–π and coinage‐metal–oxygen interactions coexist in the same complex. The cation–π interaction in most triads has a greater enhancing effect on the coinage‐metal–oxygen interaction. This effect is analyzed in terms of the binding distance, interaction energy, and electrostatic potential in the complexes. Furthermore, the formation, strength, and nature of both the cation–π and coinage‐metal–oxygen interactions can be understood in terms of electrostatic potential and energy decomposition. In addition, experimental evidence for the coexistence of both interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

6.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

7.
While CH–π interactions with target proteins are crucial determinants for the affinity of arguably every drug molecule, no method exists to directly measure the strength of individual CH–π interactions in drug–protein complexes. Herein, we present a fast and reliable methodology called PI (π interactions) by NMR, which can differentiate the strength of protein–ligand CH–π interactions in solution. By combining selective amino‐acid side‐chain labeling with 1H‐13C NMR, we are able to identify specific protein protons of side‐chains engaged in CH–π interactions with aromatic ring systems of a ligand, based solely on 1H chemical‐shift values of the interacting protein aromatic ring protons. The information encoded in the chemical shifts induced by such interactions serves as a proxy for the strength of each individual CH–π interaction. PI by NMR changes the paradigm by which chemists can optimize the potency of drug candidates: direct determination of individual π interactions rather than averaged measures of all interactions.  相似文献   

8.
N‐Methylacetamide, a model of the peptide unit in proteins, is allowed to interact with CH3SH, CH3SCH3, and CH3SSCH3 as models of S‐containing amino acid residues. All of the minima are located on the ab initio potential energy surface of each heterodimer. Analysis of the forces holding each complex together identifies a variety of different attractive forces, including SH???O, NH???S, CH???O, CH???S, SH???π, and CH???π H‐bonds. Other contributing noncovalent bonds involve charge transfer into σ* and π* antibonds. Whereas some of the H‐bonds are strong enough that they represent the sole attractive force in several dimers, albeit not usually in the global minimum, charge‐transfer‐type noncovalent bonds play only a supporting role. The majority of dimers are bound by a collection of several of these attractive interactions. The SH???O and NH???S H‐bonds are of comparable strength, followed by CH???O and CH???S.  相似文献   

9.
6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5–7‐membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl‐anion‐ and triene‐type 6π electrocyclizations. Described herein is a zinc‐catalyzed formal [4+3] annulation of isoxazoles with 3‐en‐1‐ynol ethers via 6π electrocyclization, leading to the site‐selective synthesis of functionalized 2H‐azepines and 4H‐azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H‐azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl‐cation‐type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.  相似文献   

10.
π‐Conjugated thienylene? phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO–LUMO gap, and the role of intramolecular non‐covalent cumulative interactions in the construction of π‐conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the π orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π* orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of S???F and H???F interactions in the fluorinated phenylene? thienylene compounds add to the S???O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter‐ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the π system, were corroborated by a narrow HOMO–LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD‐DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene? (fluorinated and dialkoxylated phenylene) five‐ring oligomers agree with the above results and show the formation of quasi‐planar conformations with non‐covalent S???O, H???F, and S???F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.  相似文献   

11.
4‐Chloro‐5‐(2‐phenoxyethoxy)phthalonitrile, C16H11ClN2O2, (I), and 4‐chloro‐5‐[2‐(pentafluorophenoxy)ethoxy]phthalonitrile, C16H6ClF5N2O2, (II), show different types of electrostatic interaction. In (I), the phenoxy and phthalonitrile (benzene‐1,2‐dicarbonitrile) moieties are well separated in an open conformation and intermolecular C—H...π interactions are observed in the crystal packing. On the other hand, in (II), the pentafluorophenoxy moiety interacts closely with the Cl atom to form a folded conformation containing an intramolecular halogen–π interaction.  相似文献   

12.
A molecular dynamics simulation of the folding of conantokin-T (con-T), a short helical peptide with 5 helical turns of 21 amino acids with 10 charged residues, was carried out to examine folding pathways for this peptide and to predict the folding rate. In the 18 trajectories run at 300 K, 16 trajectories folded, with an averaged folding time of approximately 50 ns. Two trajectories did not fold in up to 200 ns simulation. The folded structure in folded trajectories is in good agreement with experimental structure. An analysis of the trajectories showed that, at the beginning of a few nanoseconds, helix formation started from residues 5-9 with assistance of a hydrophobic clustering involving Tyr5, Met8, and Leu9. The peptide formed a U-shape mainly due to charge-charge interactions between charged residues at the N- and C-terminus segments. In the next approximately 10 ns, several nonnative charge-charge interactions were broken and nonnative Gla10-Lys18 (this denotes a salt bridge between Gal10 and Lys18) and/or Gla10-Lys19 interactions appeared more frequently in this folding step and the peptide became a fishhook J-shape. From this structure, the peptide folded to the folded state in 7 of all 16 folded trajectories in approximately 15 ns. Alternatively, in approximately 30 ns, the con-T went to a conformation in an L-shape with 4 helical turns and a kink at the Arg13 and Gla14 segment in the other 9 trajectories. Con-T in the L-shape then required another approximately 15 ns to fold into the folded state. In addition, in overall folding times, the former 7 trajectories folded faster with the total folding times all shorter than 45 ns, while the latter 9 trajectories folded at a time longer than 45 ns, resulting in an average folding time of approximately 50 ns. Two major folding intermediates found in 2 nonfolded trajectories are stabilized by charge clusters of 5 and 6 charged residues, respectively. With inclusion of friction and solvent-solvent interactions, which were ignored in the present GB/SA solvation model, the folding time obtained above should be multiplied by a factor of 1.25-1.7 according to a previous, similar simulation study. This results in a folding time of 65-105 ns, slightly shorter than the folding time of 127 ns for an alanine-based peptide of the same length. This suggests that the energy barrier of folding for this type of peptides with many charged residues is slightly lower than alanine-based helical peptides by less than 1 kcal/mol.  相似文献   

13.
A new and efficient synthesis of pyridine‐based heteroaromatic boronic acid derivatives is reported through a novel diboration/6π‐electrocyclization strategy. This method delivers a range of functionalized heterocycles from readily available starting materials.  相似文献   

14.
Dispersion interactions can play an important role in understanding unusual binding behaviors. This is illustrated by a systematic study of the structural preferences of diphenyl ether (DPE)–alcohol aggregates, for which OH???O‐bound or OH???π‐bound isomers can be formed. The investigation was performed through a multi‐spectroscopic approach including IR/UV and microwave methods, combined with a detailed theoretical analysis. The resulting solvent‐size‐dependent trend for the structural preference turns out to be counter‐intuitive: the hydrogen‐bonded OH???O structures become more stable for larger alcohols, which are expected to be stronger dispersion energy donors and thus should prefer an OH???π arrangement. Dispersion interactions in combination with the twisting of the ether upon solvent aggregation are key for understanding this preference.  相似文献   

15.
The importance of 1,5‐O???chalcogen (Ch) interactions in isochalcogenourea catalysis (Ch=O, S, Se) is investigated. Conformational analyses of N‐acyl isochalcogenouronium species and comparison with kinetic data demonstrate the significance of 1,5‐O???Ch interactions in enantioselective catalysis. Importantly, the selenium analogue demonstrates enhanced rate and selectivity profiles across a range of reaction processes including nitronate conjugate addition and formal [4+2] cycloadditions. A gram‐scale synthesis of the most active selenium analogue was developed using a previously unreported seleno‐Hugerschoff reaction, allowing the challenging kinetic resolutions of tertiary alcohols to be performed at 500 ppm catalyst loading. Density functional theory (DFT) and natural bond orbital (NBO) calculations support the role of orbital delocalization (occurring by intramolecular chalcogen bonding) in determining the conformation, equilibrium population, and reactivity of N‐acylated intermediates.  相似文献   

16.
Oxidative [3+3] cycloadditions offer an efficient route for six‐membered‐ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π‐electrocyclization leading to the synthesis of dihydropyrano[4,3‐b]indoles and 2,3‐dihydrofurans. The radical–radical cross‐coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.  相似文献   

17.
We report direct observation of an entropic effect in determining the folding of a linear dicarboxylate dianion with a flexible aliphatic chain [(-)O(2)C-(CH(2))(6)-CO(2)(-)] by photoelectron spectroscopy as a function of temperature (18-300 K) and degree of solvation from 1 to 18 water molecules. A folding transition is observed to occur at 16 solvent water molecules at room temperature and at 14 solvent molecules below 120 K due to the entropic effect. The (-)O(2)C-(CH(2))(6)-CO(2)(-)(H(2)O)(14) hydrated cluster exhibits interesting temperature-dependent behaviors, and its ratio of folded over linear conformations can be precisely controlled as a function of temperature, yielding the enthalpy and entropy differences between the two conformations. A folding barrier is observed at very low temperatures, resulting in kinetic trapping of the linear conformation. The current work provides a simple model system to study the dynamics and entropic effect in complex systems and may be important for understanding the hydration and conformation changes of biological molecules.  相似文献   

18.
A highly fluorescent coordination cage [Zn8L4I8] has been constructed by treating enantiopure pyridyl‐functionalized metallosalalen units (L) with zinc(II) iodide and characterized by a variety of techniques including microanalysis, thermogravimetric analysis (TGA), circular dichroism (CD) spectroscopy, and single‐crystal and powder X‐ray diffraction. Strong intermolecular π–π, CH???π, and CH???I interactions direct packing of the cage molecules to generate a 3D polycage network interconnected by pentahedral cages formed by adjacent pentamers. The cage has an amphiphilic helical cavity decorated with chiral NH functionalities capable of interactions with guest species such as saccharides. The fluorescence of the cage was greatly enhanced by five enantiomeric saccharides in solution, with enantioselectivity factors of 2.480–4.943, and by five enantiomeric amines in the solid state, with enantioselective fluorescence enhancement ratios of 1.30–3.60. This remarkable chiral sensing of both saccharides and amines with impressive enantioselectivity may result from the steric confinement of the cavity as well as its conformational rigidity. It holds great promise for the development of novel chiral cage materials for sensing applications.  相似文献   

19.
An N‐heterocyclic carbene substituted by two expanded 9‐ethyl‐9‐fluorenyl groups was shown to bind an AuCl unit in an unusual manner, namely with the Au?X rod sitting out of the plane defined by the heterocyclic carbene unit. As shown by X‐ray studies and DFT calculations, the observed large pitch angle (21°) arises from an easy displacement of the gold(I) atom away from the carbene lone‐pair axis, combined with the stabilisation provided by weak CH???Au interactions involving aliphatic and aromatic H atoms of the NHC wingtips. Weak, intermolecular Cl???H bonds are likely to cooperate with the H???Au interactions to stabilise the out‐of‐plane conformation. A general belief until now was that tilt angles in NHC complexes arise mainly from steric effects within the first coordination sphere.  相似文献   

20.
MP2/aug‐cc‐pVTZ calculations are performed on complexes of YO3 (Y = S, Se) with a series of electron‐donating chalcogen bases YHX (X = H, Cl, Br, CCH, NC, OH, OCH3). These complexes are formed through the interaction of a positive electrostatic potential region (π‐hole) on the YO3 molecule with the negative region in YHX. Interaction energies of the binary O3Y???YHX complexes are in the range of ?4.37 to ?12.09 kcal/mol. The quantum theory of atoms in molecules and the natural bond orbital analysis were applied to characterize the nature of interactions. It was found that the formation and stability of these binary complexes are ruled mainly by electrostatic effects, although the electron charge transfer from YHX to YO3 unit also seems to play an important role. In addition, mutual influence between the Y???N and Y???Y interactions is studied in the ternary HCN???O3Y???YHX complexes. The results indicate that the formation of a Y???N interaction tends to weaken Y???Y bond in the ternary systems. Although the Y???Y interaction is weaker than the Y???N one, however, both types of interactions seem to compete with each other in the HCN???O3Y???YHX complexes. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号