首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
We use quantum theory of atoms in molecules (QTAIM) and the stress tensor topological approaches to explain the effects of the torsion φ of the C‐C bond linking the two phenyl rings of the biphenyl molecule on a bond‐by‐bond basis using both a scalar and vector‐based analysis. Using the total local energy density H( r b), we show the favorable conditions for the formation of the controversial H–H bonding interactions for a planar biphenyl geometry. This bond‐by‐bond QTAIM analysis is found to be agreement with an earlier alternative QTAIM atom‐by‐atom approach that indicated that the H–H bonding interaction provided a locally stabilizing effect that is overwhelmed by the destabilizing role of the C‐C bond. This leads to a global destabilization of the planar biphenyl conformation compared with the twisted global minimum. In addition, the H( r b) analysis showed that only the central torsional C‐C bond indicated a minimum for a torsion φ value coinciding with that of the conventional global energy minimum. The H–H bonding interactions are found to be topologically unstable for any torsion of the central C‐C bond away from the planar biphenyl geometry. Conversely, we demonstrate that for 0.0° < φ < 39.95° there is a resultant increase in the topological stability of the C nuclei comprising the central torsional C‐C bond. Evidence is found of the effect of the H–H bonding interactions on the torsion φ of the central C‐C bond of the biphenyl molecule in the form of the QTAIM response β of the total electronic charge density ρ( r b). Using a vector‐based treatment of QTAIM we confirm the presence of the sharing of chemical character between adjacent bonds. In addition, we present a QTAIM interpretation of hyperconjugation and conjugation effects, the former was quantified as larger in agreement with molecular orbital (MO) theory. The stress tensor and the QTAIM H atomic basin path set areas are independently found to be new tools relevant for the incommensurate gas to solid phase transition occurring in biphenyl for a value of the torsion reaction coordinate φ ≈ 5°. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

3.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

4.
The effect of substitution in the dodecahedrane (C20H20) cage on bonding in the confined He dimer is analyzed. The He He distances inside the halogenated dodecahedrane C20X20 (X = F Br) cages are found to be less than half of that in the free He dimer. Comparing the equilibrium structure of He2@C20H20 with He2@C20X20 at ωB97XD/def2-TZVPP level, it is found that the He-He distances are relatively larger in the latter cases indicating the influence of halogen groups on the interaction between the cage and the trapped He pair. The viability of the He2@C20X20 complexes is reflected in the presence of a very high activation energy barrier against the thermochemically feasible dissociation process producing free He2 and C20X20. Quantum theory of atoms in molecules (QTAIM) approach reveals a partial covalent interaction between He pair.  相似文献   

5.
The cooperative effects of hydrogen bonding in small water clusters (H2O)n (n=3–6) have been studied by using the partition of the electronic energy in accordance with the interacting quantum atoms (IQA) approach. The IQA energy splitting is complemented by a topological analysis of the electron density (ρ( r )) compliant with the quantum theory of atoms‐in‐molecules (QTAIM) and the calculation of electrostatic interactions by using one‐ and two‐electron integrals, thereby avoiding convergence issues inherent to a multipolar expansion. The results show that the cooperative effects of hydrogen bonding in small water clusters arise from a compromise between: 1) the deformation energy (i.e., the energy necessary to modify the electron density and the configuration of the nuclei of the isolated water molecules to those within the water clusters), and 2) the interaction energy (Eint) of these contorted molecules in (H2O)n. Whereas the magnitude of both deformation and interaction energies is enhanced as water molecules are added to the system, the augmentation of the latter becomes dominant when the size of the cluster is increased. In addition, the electrostatic, classic, and exchange components of Eint for a pair of water molecules in the cluster (H2O)n?1 become more attractive when a new H2O unit is incorporated to generate the system (H2O)n with the last‐mentioned contribution being consistently the most important part of Eint throughout the hydrogen bonds under consideration. This is opposed to the traditional view, which regards hydrogen bonding in water as an electrostatically driven interaction. Overall, the trends of the delocalization indices, δ(Ω,Ω′), the QTAIM atomic charges, the topology of ρ( r ), and the IQA results altogether show how polarization, charge transfer, electrostatics, and covalency contribute to the cooperative effects of hydrogen bonding in small water clusters. It is our hope that the analysis presented in this paper could offer insight into the different intra‐ and intermolecular interactions present in hydrogen‐bonded systems.  相似文献   

6.
Interactions in dimers of model alkali metal derivatives M2X2 (M=Li or Na or K; X=H or F, Cl, OH) are studied in the frame of the quantum theory of atoms in molecules (QTAIM) using the interacting quantum atoms approach (IQA). Contrary to opinion prevalent in QTAIM studies, the interaction between two anions linked by a bond path is demonstrated to be strongly repulsive. One may therefore say that a bond path does not necessarily indicate bonding interactions. The interactions between two anions or two cations that are not linked by a bond path are also strongly repulsive. The repulsive anion–anion and cation–cation interactions are outweighed by much stronger attractive anion–cation interactions, and the model molecules are therefore in a stable state. The attractive Ehrenfest forces (calculated in the frame of the QTAIM) acting across interatomic surfaces shared by anions in the dimers do not reflect the repulsive interactions between anions. Probable reasons of this disagreement are discussed. The force exerted on the nucleus and the electrons of a particular atom by the nucleus and the electrons of any another atom in question is proposed. It is assumed that this force unambiguously exposes whether basins of two atoms are attracted or repelled by each other in a polyatomic molecule.  相似文献   

7.
Based on an experimental observation, it has been controversially suggested in a study (Kurotobi et al., Science 2011 , 33, 613) that a single molecule of water can completely be localized within the subnano‐space inside the fullerene C60 cage and, that neither the H atoms nor the O lone‐pairs are linked, either via hydrogen bonding or through dative bonding, with the interior C‐framework of the C60 cage. To resolve the controversy, electronic structure calculations were performed by using the density functional theory, together with the quantum theory of atoms in molecules, the natural population and bond orbital analyses, and the results were analyzed by using varieties of recommended diagnostics often used to interpret noncovalent interactions. The present results reveal that the mechanically entrapped H2O molecule is not electronically innocent of the presence of the cage; each H atom of H2O is weakly O? H???C60 bonded, whereas the O lone‐pairs are O???C60 bonded regardless of the conformations investigated. Exploration of various featured properties suggests that H2O@C60 may be regarded as a unique system composed of both inter‐ and intramolecular interactions.  相似文献   

8.
The nature of H‐H interaction between ortho‐hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial‐based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader's hypothesis of H? H bonding, partitioning the atomic energy into intra‐atomic and interatomic terms reveals that there is a net attractive interaction between the ortho‐hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho‐hydrogens remains almost constant when they participate in the H‐H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the H? H bond, it is almost compensated by the destabilizing effects of the intra‐atomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intra‐atomic and interatomic energy terms of ortho‐hydrogens during H? H bond formation are very similar to those observed for the H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
We have discovered, using developed by us recently FALDI and FAMSEC computational techniques, fundamentally distinct mechanisms of intramolecular red- and blue-shifted H-bond formation that occurred in different conformers of the same molecule (amino-acid β-alanine) involving the same heteroatoms (O–H???N and N–H???O). Quantitative topological, geometric and energetic data of both H-bonds obtained with well-known QTAIM and IQA methodologies agree with what is known regarding H-bonding in general. However, the FALDI charge and decomposition scheme for calculating in real space 3D conformational deformation densities provided clear evidence that the process of electron density redistribution taking place on the formation of the stronger red-shifted H-bond is fundamentally distinct from the weaker blue-shifted H-bond. Contributions made by atoms of the X–H???Y–Z fragment (IUPAC notation) as well as distinct atoms on the H-bond formation were fully explored. The FAMSEC energy decomposition approach showed that the atoms involved in formation of the red-shifted H-bond interact in a fundamentally different fashion, both locally and with the remainder of the molecule, as compared with those of the blue-shifted H-bond. Excellent correlations of trends obtained with QTAIM, IQA, FAMSEC and FALDI techniques were obtained. Commentary regarding IUPAC recommended definition of an H-bond and validity of observed AILs (or bond paths) of the two H-bond kinds is also discussed.  相似文献   

10.
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.  相似文献   

11.
12.
13.
Non‐covalent interactions involving multicenter multielectron skeletons such as boron clusters are rare. Now, a non‐covalent interaction, the nido‐cage???π bond, is discovered based on the boron cluster C2B9H12? and an aromatic π system. The X‐ray diffraction studies indicate that the nido‐cage???π bonding presents parallel‐displaced or T‐shaped geometries. The contacting distance between cage and π ring varies with the type and the substituent of the aromatic ring. Theoretical calculations reveal that this nido‐cage???π bond shares a similar nature to the conventional anion???π or π???π bonds found in classical aromatic ring systems. This nido‐cage???π interaction induces variable photophysical properties such as aggregation‐induced emission and aggregation‐caused quenching in one molecule. This work offers an overall understanding towards the boron cluster‐based non‐covalent bond and opens a door to investigate its properties.  相似文献   

14.
The intramolecular hydrogen‐bonding interactions and properties of a series of nitroamino[1,3,5]triazine‐based guanidinium salts were studied by using the dispersion‐corrected density functional theory method (DFT‐D). Results show that there are evident LP(N or O; LP=lone pair)→σ*(N? H) orbital interactions related to O???H? N or N???H? N hydrogen bonds. Quantum theory of atoms in molecules (QTAIM) was applied to characterize the intramolecular hydrogen bonds. For the guanidinium salts studied, the intramolecular hydrogen bonds are associated with a seven‐ or eight‐membered pseudo‐ring. The guanylurea cation is more helpful for improving the thermal stabilities of the ionic salts than other guanidinium cations. The contributions of different substituents on the triazine ring to the thermal stability increase in the order of ? NO223 (? ONO2)2. Energy decomposition analysis shows that the salts are stable owing to electrostatic and orbital interactions between the ions, whereas the dispersion energy has very small contributions. Moreover, the salts exhibit relatively high densities in the range of 1.62–1.89 g cm?3. The detonation velocities and pressures lie in the range of 6.49–8.85 km s?1 and 17.79–35.59 GPa, respectively, which makes most of them promising explosives.  相似文献   

15.

The present study examines bonding patterns between copper Cun clusters (n?=?3–20) and aromatic compounds (benzene, phenol, and benzaldehyde) using a density-functional theory (DFT) approach. Hirshfeld population, natural bond orbital (NBO), molecular orbitals, and quantum theory of atoms in molecules (QTAIM) analyses suggested the formation of two types of interactions Cu–arene and C–H···Cu, in the complexation of copper clusters by an aromatic compound.

  相似文献   

16.
The first agostic interaction in a gold complex is described. The presence of a bonding C?H???Au interaction in a cationic “tricoordinate” gold(III) complex was suggested by DFT calculations and was subsequently confirmed by NMR spectroscopy at low temperature. The agostic interaction was analyzed computationally using NBO and QTAIM analyses (NBO=natural bond orbital; QTAIM=quantum theory of atoms in molecules).  相似文献   

17.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

18.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen 3+ (n =1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge‐induced dipole bonding. Excellent correlations (R 2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

19.
Interactions in dimers of model alkali metal derivatives M(2)X(2) (M = Li or Na or K; X = H or F, Cl, OH) are studied in the frame of the quantum theory of atoms in molecules (QTAIM) using the interacting quantum atoms approach (IQA). Contrary to opinion prevalent in QTAIM studies, the interaction between two anions linked by a bond path is demonstrated to be strongly repulsive. One may therefore say that a bond path does not necessarily indicate bonding interactions. The interactions between two anions or two cations that are not linked by a bond path are also strongly repulsive. The repulsive anion-anion and cation-cation interactions are outweighed by much stronger attractive anion-cation interactions, and the model molecules are therefore in a stable state. The attractive Ehrenfest forces (calculated in the frame of the QTAIM) acting across interatomic surfaces shared by anions in the dimers do not reflect the repulsive interactions between anions. Probable reasons of this disagreement are discussed. The force exerted on the nucleus and the electrons of a particular atom by the nucleus and the electrons of any another atom in question is proposed. It is assumed that this force unambiguously exposes whether basins of two atoms are attracted or repelled by each other in a polyatomic molecule.  相似文献   

20.
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe173+, ThHe174+, and PaHe174+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHen3+ (n=1–17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R2>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac−He distances, and also with the incremental He binding energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号