首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.  相似文献   

3.
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.  相似文献   

4.
Multiple energy scales are detected in measurements of the thermodynamic and transport properties in heavy fermion metals. We demonstrate that the experimental data on the energy scales can be well described by the scaling behavior of the effective mass at the fermion condensation quantum phase transition, and show that the dependence of the effective mass on temperature and applied magnetic fields gives rise to the non-Fermi liquid behavior. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, of the scales and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance and magnetic entropy obtained in remarkable measurements on the heavy fermion metal YbRh2Si2.  相似文献   

5.
We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so‐called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitatively, and derive for the first time the (temperature—magnetic field) phase diagram, that contains Landau‐Fermi‐liquid, crossover and non‐Fermi liquid parts, thus resembling that of heavy‐fermion compounds.  相似文献   

6.
Phase transitions observed in electronic systems of solids in the vicinity of the quantum critical point where the effective mass diverges are analyzed within the framework of the theory of fermion condensation. It is shown that the disordered phase contains a fermion condensate. Its entropy is finite at T → 0 and initiates a chain of transitions occurring at extremely low temperatures. The results are in agreement with experiment.  相似文献   

7.
The appearance of the fermion condensation, which can be compared to the Bose-Einstein condensation, in different Fermi liquids is considered; its properties are discussed; and a large amount of experimental evidence in favor of the existence of the fermion condensate (FC) is presented. We show that the appearance of FC is a signature of the fermion condensation quantum phase transition (FCQPT), which separates the regions of normal and strongly correlated liquids. Beyond the FCQPT point, the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other, FC, localized at the Fermi level. In the superconducting state, the quasiparticle dispersion in systems with FC can be represented by two straight lines, characterized by effective masses M FC * and M L * and intersecting near the binding energy E0, which is of the order of the superconducting gap. The same quasiparticle picture and the energy scale E0 persist in the normal state. We demonstrate that fermion systems with FC have features of a “quantum protectorate” and show that strongly correlated systems with FC, which exhibit large deviations from the Landau Fermi liquid behavior, can be driven into the Landau Fermi liquid by applying a small magnetic field B at low temperatures. Thus, the essence of strongly correlated electron liquids can be controlled by weak magnetic fields. A reentrance into the strongly correlated regime is observed if the magnetic field B decreases to zero, while the effective mass M* diverges as \(M^ * \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). The regime is restored at some temperature \(T^ * \propto \sqrt B \). The behavior of Fermi systems that approach FCQPT from the disordered phase is considered. This behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. We expect that FCQPT takes place in trapped Fermi gases and in low-density neutron matter, leading to stabilization of the matter by lowering its ground-state energy. When the system recedes from FCQPT, the effective mass becomes density independent and the system is suited perfectly to be conventional Landau Fermi liquid.  相似文献   

8.
The behavior of the electronic system of heavy-fermion metals is considered. We show that there exist at least two main types of the behavior when the system is near quantum critical point, which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi liquid, while the second type is depicted by the behavior of a strongly correlated Fermi liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures T, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields B. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields B. We show that the effective mass M* diverges at the very point that the Neél temperature goes to zero. The B-T phase diagrams of both liquids are studied. We demonstrate that these B-T phase diagrams have a strong impact on the main properties of heavy-fermion metals, such as the magnetoresistance, resistivity, specific heat, magnetization, and volume thermal expansion.  相似文献   

9.
Quantum phase transitions occur at zero temperature when some non‐thermal control‐parameter like pressure or chemical composition is changed. They are driven by quantum rather than thermal fluctuations. In this review we first give a pedagogical introduction to quantum phase transitions and quantum critical behavior emphasizing similarities with and differences to classical thermal phase transitions. We then illustrate the general concepts by discussing a few examples of quantum phase transitions occurring in electronic systems. The ferromagnetic transition of itinerant electrons shows a very rich behavior since the magnetization couples to additional electronic soft modes which generates an effective long‐range interaction between the spin fluctuations. We then consider the influence of rare regions on quantum phase transitions in systems with quenched disorder, taking the antiferromagnetic transitions of itinerant electrons as a primary example. Finally we discuss some aspects of the metal‐insulator transition in the presence of quenched disorder and interactions.  相似文献   

10.
The behavior of the chiral soliton model at high temperature is investigated.as well as the influence of thermal effects on the chiral soliton solutions and the fermion condensation is analysed.One possible physical mechanism is established,which is responsible for why there exists a difference between the critical temperature in deconfinement phase transition and that in chiral restoration phase transition.  相似文献   

11.
We analyze measurements of the magnetization, differential susceptibility and specific heat of quasi-onedimensional insulator Cu(C4H4N2)(NO3)2 (CuPzN) subjected to magnetic fields. We show that the thermodynamic properties are defined by quantum spin liquid formed with spinons, with the magnetic field tuning the insulator CuPzN towards quantum critical point related to fermion condensation quantum phase transition (FCQPT) at which the spinon effective mass diverges kinematically. We show that the FCQPT concept permits to reveal and explain the scaling behavior of thermodynamic characteristics. For the first time, we construct the schematic T–H (temperature-magnetic field) phase diagram of CuPzN that contains Landau–Fermi-liquid, crossover and non-Fermi liquid parts, thus resembling that of heavy-fermion compounds.  相似文献   

12.
The main properties and the type of the field-tuned quantum critical point in the heavy-fermion metal CeCoIn5 that arise upon application of magnetic fields B are considered within a scenario based on fermion condensation quantum phase transition. We analyze the behavior of the effective mass, resistivity, specific heat, charge, and heat transport as functions of applied magnetic fields B and show that, in the Landau Fermi liquid regime, these quantities demonstrate critical behavior, which is scaled by the critical behavior of the effective mass. We show that, in the high-field non-Fermi liquid regime, the effective mass exhibits very specific behavior, M*~ T? 2/3, and the resistivity demonstrates T2/3 dependence. Finally, at elevated temperatures, it changes to M*~T?1/2, while the resistivity becomes linear in T. In zero magnetic field, the effective mass is controlled by temperature T and the resistivity is also linear in T. The obtained results are in good agreement with recent experimental facts.  相似文献   

13.
We consider the behavior of quasiparticles in the superconducting state of high-Tc metals within the framework of the theory of the superconducting state based on the fermion condensation quantum phase transition. We show that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as a Landau-Fermi liquid. These observations are in good agreement with recent experimental facts.  相似文献   

14.
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh2Si2.  相似文献   

15.
We investigate the role of disorder for field-driven quantum phase transitions of metallic antiferromagnets. For systems with sufficiently low symmetry, the combination of a uniform external field and non-magnetic impurities leads effectively to a random magnetic field which strongly modifies the behavior close to the critical point. Using perturbative renormalization group, we investigate in which regime of the phase diagram the disorder affects critical properties. In heavy fermion systems where even weak disorder can lead to strong fluctuations of the local Kondo temperature, the random field effects are especially pronounced. We study possible manifestation of random field effects in experiments and discuss in this light neutron scattering results for the field driven quantum phase transition in CeCu5.8Au0.2.  相似文献   

16.
17.
《Physics letters. A》1998,249(3):237-241
A density functional formulation of the fermion condensation is presented. It is demonstrated that the standard Kohn-Sham scheme is not valid beyond the fermion condensation phase transition since the functional starts to depend on the quasiparticle density matrix. Our consideration also furnishes an opportunity to calculate the real single particle excitation spectra of superconducting systems within the density functional theory.  相似文献   

18.
The behavior of the specific heat cp, effective mass M*, and the thermal expansion coefficient of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat , , while the thermal expansion coefficient . Thus, the Grüneisen ratio Γ(T)=/cp does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as . When the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as , M*∝1/T, and =a+bT with a,b being constants. Again, the Grüneisen ratio diverges as .  相似文献   

19.
The behavior of Fermi systems that approach the fermion condensation quantum phase transition (FCQPT) from the disordered phase is considered. We show that the quasiparticle effective mass M* diverges as M* ∝ 1/¦x?xFC¦, where x is the system density and xFC is the critical point at which FCQPT occurs. Such behavior is of general form and takes place in both three-dimensional (3D) and two-dimensional (2D) systems. Since the effective mass M* is finite, the system exhibits the Landau Fermi liquid behavior. At ¦x? xFC¦/xFC?1, the behavior can be viewed as highly correlated, because the effective mass is large and strongly depends on the density. In the case of electronic systems, the Wiedemann-Franz law is valid and the Kadowaki-Woods ratio is preserved. Beyond the region ¦xxFC¦/xFC?1, the effective mass is approximately constant and the system becomes a conventional Landau Fermi liquid.  相似文献   

20.
Specific heat versus temperature curves for various pressures, or magnetic fields (or some other external control parameter) have been seen to cross at a point or in a very small range of temperatures in many correlated fermion systems. We show that this behavior is related to the possibility of existence of a quantum critical point. Vicinity to a quantum critical point in these systems leads to a crossover from quantum to classical fluctuation regime at some temperature . The temperature at which the curves cross turns out to be near this crossover temperature. We have discussed the case of the normal phase of liquid Helium three and the heavy fermion systems CeAl3 and UBe13 in detail within the spin fluctuation theory, a theory which inherently contains a low energy scale which can be identified with . When the crossover scale is a homogeneous function of these control parameters there is always crossing at a point. We also mention other theories exhibiting a low energy scale near a quantum critical point and discuss this phenomenon in those theories. Received 25 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号