首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《化学:亚洲杂志》2018,13(15):1962-1971
Recently, supramolecular hydrogels have attracted increasing interest owing to their tunable stability and inherent biocompatibility. However, only few studies have been reported in the literature on self‐healing supramolecular nucleoside hydrogels, compared to self‐healing polymer hydrogels. In this work, we successfully developed a self‐healing supramolecular nucleoside hydrogel obtained by simply mixing equimolar amounts of guanosine (G) and isoguanosine (isoG) in the presence of K+. The gelation properties have been studied systematically by comparing different alkali metal ions as well as mixtures with different ratios of G and isoG. To this end, rheological and phase diagram experiments demonstrated that the co‐gel not only possessed good self‐healing properties and short recovery time (only 20 seconds) but also could be formed at very low concentrations of K+. Furthermore, nuclear magnetic resonance (NMR), powder X‐ray diffraction (PXRD), and circular dichroism (CD) spectroscopy suggested that possible G2isoG2‐quartet structures occurred in this self‐healing supramolecular nucleoside hydrogel. This co‐gel, to some extent, addressed the problem of isoguanosine gels for the applications in vivo, which showed the potential to be a new type of drug delivery system for biomedical applications in the future.  相似文献   

2.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

3.
This work demonstrates the successful incorporation of functionalized single‐walled carbon nanotubes (f‐SWCNTs) into the phenylboronate‐diol crosslinked polymer gel to create a hybrid system with reversible sol–gel transition. The phenylboronic acid‐containing and diol‐containing polymers were first separately prepared by the reversible addition–fragmentation chain transfer polymerization. Covalent functionalization of single‐walled carbon nanotubes (SWCNTs) with an azide‐derivatized, diol‐containing polymer was then accomplished by a nitrene addition reaction. Subsequently, the hybrid gels were prepared by crosslinking the mixture of f‐SWCNTs and diol‐containing polymer with the phenylboronic acid‐containing polymer. The hybrid gel has been characterized by scanning electron microscopy (SEM) and rheological analysis. The SEM measurement demonstrated a homogeneous dispersion of f‐SWCNTs within the gel matrices. Rheological experiments also demonstrated that the hybrid gel exhibited storage moduli significantly higher than those of the native gel obtained from the phenylboronic acid‐containing and diol‐containing polymers. The hybrid gel can be switched into their starting polymer (f‐SWCNTs) solutions by adjusting the pH of the system. Moreover, the hybrid gel revealed a self‐healing property that occurred autonomously without any outside intervention. By employing this dynamic character, it is possible to regenerate the used gel, and thus, it has the potential to perform in a range of dynamic or bioresponsive applications Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Novel hydrogel phases based on positively charged and zwitterionic surfactants, namely, N‐[p‐(n‐dodecyloxybenzyl)]‐N,N,N‐trimethylammonium bromide (pDOTABr) and p‐dodecyloxybenzyldimethylamine oxide (pDOAO), which combine pristine carbon nanotubes (CNTs), were obtained, thus leading to stable dispersions and enhanced cross‐linked networks. The composite hydrogel featuring a well‐defined nanostructured morphology and an overall positively charged surface was shown to efficiently immobilise a polyanionic and redox‐active tetraruthenium‐substituted polyoxometalate (Ru4POM) by complementary charge interactions. The resulting hybrid gel has been characterised by electron microscopy techniques, whereas the electrostatic‐directed assembly has been monitored by means of fluorescence spectroscopy and ζ‐potential tests. This protocol offers a straightforward supramolecular strategy for the design of novel aqueous‐based electrocatalytic soft materials, thereby improving the processability of CNTs while tuning their interfacial decoration with multiple catalytic domains. Electrochemical evidence confirms that the activity of the catalyst is preserved within the gel media.  相似文献   

5.
An imidazolium‐modified hexa‐peri‐hexabenzocoronene derivative (HBC‐C11‐MIM[Cl?]) was designed and synthesized as a stabilizer to fabricate reduced graphene oxide (RGO). The resulting RGO/HBC‐C11‐MIM[Cl?] hybrid shows excellent dispersivity (5.0 mg mL?1) and stability in water. RGO/HBC‐C11‐MIM[Cl?] was comprehensively characterized by using atomic force microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy, thus revealing that one HBC‐C11‐MIM[Cl?] group can stabilize about 178 carbon atoms on the graphene sheets. The obtained hybrid film exhibits a high conductivity of 286 S m?1. Furthermore, the HBC‐C11‐MIM[Cl?]‐modified RGO sheets can be readily dispersed in polar organic solvents upon exchange of the hydrophilic Cl? ions for hydrophobic bis(trifluoromethylsulfonyl) amide (NTf2?) ions.  相似文献   

6.
A self‐healing hydrogel is prepared by crosslinking acrylamide with a host–guest macro‐crosslinker assembled from poly(β‐cyclodextrin) nanogel and azobenzeneacrylamide. The photoisomerizable azobenzene moiety can change its binding affinity with β‐cyclodextrin, therefore the crosslinking density and rheology property of the hydrogel can be tuned with light stimulus. The hydrogel can repair its wound autonomously through the dynamic host–guest interaction. In addition, the wounded hydrogel will lose its ability of self‐healing when exposed to ultraviolet light, and the self‐healing behavior can be recovered upon the irradiation of visible light. The utilizing of host–guest macro‐crosslinking approach manifests the as‐prepared hydrogel reversible and light‐switchable self‐healing property, which would broaden the potential applications of self‐healing polymers.

  相似文献   


7.
N‐[(Uracil‐5‐yl)methyl]urea is reported as a minimalistic low‐molecular‐weight hydrogelator (LMWHG). The unusual phosphate‐induced assembly of this compound has been thoroughly investigated by IR, UV/Vis, and NMR spectroscopy, electron microscopy, and rheological experiments. This rare example of an anion‐triggered urea‐based LMWHG is the first example of a pyrimidine‐ and urea‐containing molecule that can be forced into self‐assembly in aqueous solution without additional aromatic or lipophilic groups. The gelator/phosphate ratio within the hydrogel was successfully determined by 31P MAS NMR spectroscopy. The hydrogel exhibits a very fast and repeatable self‐healing property, and remarkable G′ values. The viscoelastic properties of the hydrogel can easily be tuned by variation of the phosphate ratio.  相似文献   

8.
A dextran‐based self‐healing hydrogel is prepared by reversible Diels–Alder reaction under physiological conditions. Cytocompatible fulvene‐modified dextran as main polymer chains and dichloromaleic‐acid‐modified poly(ethylene glycol) as cross‐linkers are used. Both macro‐ and microscopic observation as well as the rheological recovery test confirm the self‐healing property of the dextran‐l‐poly(ethylene glycol) hydrogels (“l” means “linked‐by”). In addition, scanning electrochemical microscopy is used to qualitatively and quantitatively in situ track the self‐healing process of the hydrogel for the first time. It is found that the longitudinal depth of scratch on hydrogel surface almost completely healed at 37 °C after 7 h. This work represents a facile approach for fabrication of polysaccharide self‐healing hydrogel, which can be potentially used in several biomedical fields.

  相似文献   


9.
Injectable hydrogels have been commonly used as drug‐delivery vehicles and tried in tissue engineering. Injectable self‐healing hydrogels have great advantage over traditional injectable hydrogels because they can be injected as a liquid and then rapidly form bulk gels in situ at the target site under physiological conditions. This study develops an injectable thermosensitive self‐healing hydrogel based on chain‐extended F127 (PEO90‐PPO65‐PEO90) multi‐block copolymer (m‐F127). The rapid sol–gel transition ability under body temperature allows it to be used as injectable hydrogel and the self‐healing property allows it to withstand repeated deformation and quickly recover its mechanical properties and structure through the dynamic covalent bonds. It is hoped that the novel strategy and the fascinating properties of the hydrogel as presented here will provide new opportunities with regard to the design and practical application of injectable self‐healing hydrogels.

  相似文献   


10.
The self‐healing of zinc‐ion batteries (ZIBs) will not only significantly improve the durability and extend the lifetime of devices, but also decrease electronic waste and economic cost. A poly(vinyl alcohol)/zinc trifluoromethanesulfonate (PVA/Zn(CF3SO3)2) hydrogel electrolyte was fabricated by a facile freeze/thaw strategy. PVA/Zn(CF3SO3)2 hydrogels possess excellent ionic conductivity and stable electrochemical performance. Such hydrogel electrolytes can autonomously self‐heal by hydrogen bonding without any external stimulus. All‐in‐one integrated ZIBs can be assembled by incorporating the cathode, separator, and anode into hydrogel matrix since the fabrication of PVA/Zn(CF3SO3)2 hydrogel is a process of converting the liquid to quasi‐solid state. The ZIBs show an outstanding self‐healing and can recover electrochemical performance completely even after several cutting/healing cycles.  相似文献   

11.
New graphene oxide (GO)‐based hydrogels that contain vitamin B2/B12 and vitamin C (ascorbic acid) have been synthesized in water (at neutral pH value). These gel‐based soft materials have been used to synthesize various metal nanoparticles, including Au, Ag, and Pd nanoparticles, as well as nanoparticle‐containing reduced graphene oxide (RGO)‐based nanohybrid systems. This result indicates that GO‐based gels can be used as versatile reactors for the synthesis of different nanomaterials and hybrid systems on the nanoscale. Moreover, the RGO‐based nanohybrid hydrogel with Pd nanoparticles was used as an efficient catalyst for C? C bond‐formation reactions with good yields and showed high recyclability in Suzuki–Miyaura coupling reactions.  相似文献   

12.
Flexible lithium‐ion batteries are critical for the next‐generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all‐solid‐state and flexible aqueous lithium ion batteries that can self‐heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn2O4 and LiTi2(PO4)3 nanoparticles on a self‐healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self‐healing. These self‐healing batteries are demonstrated to be promising for wearable devices.  相似文献   

13.
A hybrid supramolecular polymeric hydrogel is conveniently constructed via host–guest interaction of a host cyclodextrin polymer (poly‐CD) with a guest α‐bromonaphthalene polymer (poly‐BrNp) and mixing with 6‐thio‐β‐cyclodextrin (β‐SH‐CD) modified gold nanoparticles (GPCDs) in aqueous solution. According to the dynamic oscillatory data, the hydrogel exhibits markedly enhanced stiffness compared with the GPCD‐free one (both G′ and G“ values are almost twice as high as those of the original GPCD‐free hydrogel) due to the introduction of the inorganic gold nanoparticles. This hybrid supramolecular polymeric hydrogel has a rapid and excellent self‐healing property (only about 1 min, and the G′ and G” of the self‐healed hydrogel almost turned back to their original levels after 1 hour) in air (without adding any solvent or additive).  相似文献   

14.
In this study, a dual‐component charge‐transfer (CT)‐induced supramolecular hydrogel was fabricated using pyrene‐tailored pyridinium (PYP) and 2,4,7‐trinitrofluorenone (TNF) as the electron donor and acceptor, respectively. Its thermal stability and mechanical property have been modulated effectively by altering the concentration or molar ratio of PYP and TNF. Moreover, this CT hydrogel exhibited a distinct injectable self‐healing property that could be utilized to create desired patterns on substrates. Such property holds potential for this CT hydrogel in fields like three‐dimensional printing and surface coating.  相似文献   

15.
Pentacyclic triterpenoids, a class of naturally bioactive products having multiple functional groups, unique chiral centers, rigid skeletons, and good biocompatibility, are ideal building blocks for fabricating versatile supramolecular structures. In this research, the natural pentacyclic triterpenoid glycyrrhetinic acid (GA) was used as a guest molecule for β‐cyclodextrin (β‐CD) to form a GA/β‐CD (1:1) inclusion complex. By means of GA and β‐CD pendant groups in N,N′‐dimethylacrylamide copolymers, a supramolecular polymer hydrogel can be physically cross‐linked by host–guest interactions between GA and β‐CD moieties. Moreover, self‐healing of this hydrogel was observed and confirmed by step‐strain rheological measurements, whereby the maximum storage modulus occurred at a [GA]/[β‐CD] molar ratio of 1:1. Additionally, these polymers displayed outstanding biocompatibility. The introduction of a natural pentacyclic triterpenoid into a hydrogel system not only provides a biocompatible guest–host complementary GA/β‐CD pair, but also makes this hydrogel an attractive candidate for tissue engineering.  相似文献   

16.
Self‐healing hydrogels as wound dressings still face challenges in infection prevention, especially in the dressing of mass wounds, due to their inflexibility and the slow formation of the protective film on the wound. Therefore, designing a spray‐filming (rapid‐forming) hydrogel that can serve as a bacterial barrier is of particular significance in the development of wound dressings. Here, a self‐healing hydrogel based on adipic acid dihydrazide‐modified gelatin (Gel‐ADH) and monoaldehyde‐modified sodium alginate(SA‐mCHO) is prepared. Using dynamic, Schiff base bonds, the hydrogels exhibit excellent self‐healing properties. Moreover, the gelation time of SA‐mCHO/Gel‐ADH (SG) hydrogels is shortened to 2–21 s, resulting in rapid filming by spraying the two precursor solutions. In addition, the rapid spray‐filming ability might offer sufficient flexibility and rapidity for dealing with mass and irregular wounds. Notably, the bacterial barrier experiments show that the SG hydrogel films could form an effective barrier to Staphylococcus aureus and Candida albicans for 12 h. Therefore, SG hydrogels could be used in wound dressings and they show great promise in applications associated with mass and irregular traumas.  相似文献   

17.
An extrinsic self‐healing coating system containing tetraphenylethylene (TPE) in microcapsules was monitored by measuring aggregation‐induced emission (AIE). The core healing agent comprised of methacryloxypropyl‐terminated polydimethylsiloxane, styrene, benzoin isobutyl ether, and TPE was encapsulated in a urea‐formaldehyde shell. The photoluminescence of the healing agent in the microcapsules was measured that the blue emission intensity dramatically increased and the storage modulus also increased up to 105 Pa after the photocuring. These results suggested that this formulation might be useful as a self‐healing material and as an indicator of the self‐healing process due to the dramatic change in fluorescence during photocuring. To examine the ability of the healing agent to repair damage to a coating, a self‐healing coating containing embedded microcapsules was scribed with a razor. As the healing process proceeded, blue light fluorescence emission was observed at the scribed regions. This observation suggested that self‐healing could be monitored using the AIE fluorescence.

  相似文献   


18.
Self‐healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross‐linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self‐healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.  相似文献   

19.
A lithium‐rich cathode material wrapped in sheets of reduced graphene oxide (RGO) and functionalized with polydiallyldimethylammonium chloride (PDDA) was prepared by self‐assembly induced from the electrostatic interaction between PDDA–RGO and the Li‐rich cathode material. At current densities of 1000 and 2000 mA g?1, the PDDA–RGO sheet wrapped samples demonstrated increased discharge capacities, increasing from 125 to 155 mA h g?1 and from 82 to 124 mA h g?1, respectively. The decreased resistance implied by this result was confirmed from electrochemical impedance spectroscopy results, wherein the charge‐transfer resistance of the pristine sample decreased after wrapping with the PDDA–RGO sheets. The PDDA–RGO sheets served as a protective layer sand as a conductive material, which resulted in an improvement in the retention capacity from 56 to 81 % after 90 cycles.  相似文献   

20.
Strategies to compensate material fatigue are among the most challenging issues, being most prominently addressed by the use of nano‐ and microscaled fillers, or via new chemical concepts such as self‐healing materials. A capsule‐based self‐healing material is reported, where the adverse effect of reduced tensile strength due to the embedded capsules is counterbalanced by a graphene‐based filler, the latter additionally acting as a catalyst for the self‐healing reaction. The concept is based on “click”‐based chemistry, a universal methodology to efficiently link components at ambient reaction conditions, thus generating a “reactive glue” at the cracked site. A capsule‐based healing system via a graphene‐based Cu2O (TRGO‐Cu2O‐filler) is used, acting as both the catalytic species for crosslinking and the required reinforcement agent within the material, in turn compensating the reduction in tensile strength exerted by the embedded capsules. Room‐temperature self‐healing within 48 h is achieved, with the investigated specimen containing TRGO‐Cu2O demonstrating significantly faster self‐healing compared to homogeneous (Cu(PPh3)3F, Cu(PPh3)3Br), and heterogeneous (Cu/C) copper(I) catalysts.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号