首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano- and micro-sized calcium carbonate (CaCO3) with various morphologies including multi-petal-flower-shaped, multi-step-cube-shaped, coral-shaped, dendrite-shaped and multi-antenna-shaped was successfully prepared using dodecyltrimethylammonium bromide (DTAB) micellar vevulsant. The effects of temperature, pH and the concentration of DTAB micellar solution on the morphology and crystalline form of CaCO3 were systematically investigated. The prepared CaCO3 was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The concentration of DTAB micelle, pH and reaction temperature are found to play crucial roles in the morphology, size and crystalline form of the final products. On the base of the characterizations, a possible self-assembled mechanism was proposed. The novel multi-petal-flower-shaped and multi-antenna-shaped CaCO3 may have some unique properties and potential applications in the future.  相似文献   

2.
Water soluble matrix (WSM) was extracted from pearls originated from Hyriopsis cumingii in Zhuji, Zhejiang province, China. WSM was regarded as an additive in mineralization experiments in order to study the effect of WSM on CaCO3 crystallization. The experiments were carried out at different pH and temperatures by gas diffusion method and solution titration method, respectively. Scanning electron microscopy (SEM) and Raman spectroscopy (Raman) were used as powerful techniques to analyze the co-effect of pH value, temperature and WSM on crystal growth of CaCO3. The results showed that WSM could induce aragonite at different pH values of mineralization solution, and the pH value had remarkable influence on morphology of calcite rather than aragonite due to distinct supersaturation and ionic strength related to various pH values. At different solution temperatures, WSM had little effect on crystal growth of calcium carbonate while the solution temperature had notable effect on polymorph and morphology of CaCO3 crystals. This work can provide some basic information for the polymorph and morphology control of calcium carbonate.  相似文献   

3.
In our experiments, the thermodynamic effect of calcium binding proteins (CBP) on the growth of calcium carbonate (CaCO3) was studied in vitro. The CaCO3 crystals obtained in systems with and without CBP were characterized by scanning electron microscope (SEM), Fourier Transform Infrared spectrograph (FT‐IR) and powder X‐ray diffractometer (XRD). The kinetic process was studied by monitoring the conductivity and pH value, which revealed the obvious inducement effect of CBP on the CaCO3 crystals growth, and the possible formation mechanism of CaCO3 in CBP solution was discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this work using an electrochemical technique, deposition and crystal growth of calcium carbonate and barium sulphate at a stainless steel electrode is investigated through a rotating disk electrode involving oxygen reduction under diffusion condition. The influence of some parameters such as pressure, temperature, surfactant, cosalt and pH on morphology and deposition of CaCO3 and BaSO4 at surface of the stainless steel are studied. The results of the temperature tests reveal that the surface deposition is reduced by increase of the temperature and decrease of pH. The pressure also proves to have a significant influence on the morphology and the structure of calcium carbonate and barium sulphate deposition at the metal surface. With establishing a flow condition at high pressure, nucleation and deposition of calcium carbonate and barium sulphate at the metal surface generate the nano size of CaCO3 and BaSO4 crystals and leads to reduction of the coverage of the surface. In the presence of surfactant, it is shown that deposition of the calcium carbonate decreases the surface coverage so that after the point of the critical molar concentration of surfactant, a reduction of deposition of the calcium carbonate and barium sulphate at the surface can be clearly observed. Finally, influence of monovalent cosalts such as NaCl and KCl are investigated so that it does not present any certain trend in the deposition; however the morphology of the deposited crystal considerably changes.  相似文献   

5.
Batch reactive crystallization of calcium carbonate (CaCO3) from ammonium carbonate ((NH4)2CO3) and calcium sulfate (CaSO4) was investigated in the presence of magnesium (Mg2+) ions. It was observed that Mg2+ ions partly inhibited the conversion of CaSO4 into CaCO3. When the content of Mg2+ was less than 2%, the reduction in conversion rate of CaSO4 was less than 2%, and the effect of Mg2+ ions could be ignored. Effect of impurity on crystallization kinetics of CaCO3, including the growth rate and nucleation rate, was investigated. The results revealed that when Mg2+ ions content was less than 1%, Mg2+ could promote the growth of CaCO3 and inhibit the nucleation process, which was favorable for the filtration of CaCO3.When the content of Mg2+ ions was greater than 1%, Mg2+ inhibited the growth of CaCO3, which resulted in explosion nucleation and led to a large number of particles in the solution, which was unfavorable for the filtration of CaCO3. Based on the Bransom model, the particle size distribution equations of CaCO3 were established. X‐ray diffraction patterns and scanning electron microscopy images exhibited the existence of spherical vaterite of CaCO3 due to the reaction of CaSO4 with (NH4)2CO3 under the effect of Mg2+ ions, which was inconsistent with the results reported in the literatures.  相似文献   

6.
Calcium carbonate (CaCO3) formation was observed without surface modification of the organic template and in the absence of chemical additives such as macromolecules and divalent cations. Our innovative electrochemical approach that involves the use of an alternating current facilitated the crystallization of CaCO3 polymorphs on a porous polymer membrane. A solution of calcium chloride (CaCl2) and sodium carbonate (Na2CO3) was filled in a glass cell, and the porous membrane was interposed in the cell. A sine waveform of 10 Hz was applied to the platinum electrodes using a high-speed bipolar power supply. An alternating current was generated for 60 min. The crystal morphology and crystal structure of the resulting hybrid membrane were studied. In this electrochemical approach, versatile polymorphs of vaterite, aragonite, and calcite were formed on the membrane, thereby showing that the alternating current induced the formation of various polymorphs of CaCO3 on the porous membrane even in the absence of any additives.  相似文献   

7.
Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) ((EO)20-(PO)72-(EO)20) and O-(hydroxy isopropyl) chitosan (HPCHS) were employed as control agents of calcium carbonate crystal growth. The effect of the concentrations of polymers, [Ca2+] and [CO32−], the ratios of [Ca2+]-[CO32−] and the initial pH of the solutions were investigated. The obtained CaCO3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The particles are mainly calcite with various morphologies; their size and morphologies are influenced by the polymer content. For (EO)20-(PO)72-(EO)20 systems, the initial pH has a notable influence; but in the HPCHS solution pH shows little influence. The ratio of [Ca2+]-[CO32−] clearly affects the CaCO3 particle size and aggregation degree. HPCHS showed more significant influence on CaCO3 crystallization than (EO)20-(PO)72-(EO)20. The mechanisms of the CaCO3 crystallization as controlled by (EO)20-(PO)72-(EO)20 and HPCHS are proposed and demonstrated by the molecular dynamics simulations.  相似文献   

8.
《Journal of Crystal Growth》2006,286(2):424-430
Control over the morphology of calcium carbonate (CaCO3) crystals has been achieved through the use of anionic, amphiphilic block copolypeptides during crystallization. Microspheres of CaCO3 can be synthesized by the introduction of preformed organic, amphiphilic block copolypeptide templates, poly(l-aspartate sodium salt)100-block-[poly(l-phenylalanine)25-random-(l-leucine)25] (1) and poly(l-glutamate sodium salt)100-block-[poly(l-phenylalanine)25-random-(l-leucine)25] (2). When cationic amphiphiles are used in lieu of the anionic amphiphiles, only CaCO3 rhombohedra are produced. The self-assembling amphiphile controls the precipitation of the microspheres by acting as a template to form giant CaCO3 microspheres. These microspheres are composed of nanocrystals ranging in size from 10 to 60 nm using 1 and 20 to 100 nm using 2.  相似文献   

9.
Complex CaCO3 superstructure can be easily synthesized by using poly (sodium 4‐styrenesulfonate) (PSSS) as a structure directing agent to direct the controlled precipitation of calcium carbonate from aqueous solution. The products were characterized by scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD) analysis. The results revealed that the morphology of the products changed significantly with the increasing of the concentration of PSSS in solution, from rhombohedral particles to plate‐packed aggregates to spheres with smooth surface, to sponge‐like spheres and finally to complex spherical superstructure consisted of plate‐like sub‐units. We hypothesize that the observed sequential changes in morphology of CaCO3 particles with added PSSS concentration may be due to the influence of PSSS on nucleation, growth and aggregation of CaCO3 crystals. The formation mechanisms of CaCO3 crystals with different morphologies were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The effect of montmorillonite and kaolinite, most common clay in marine water, on nucleation and growth of calcium carbonate in standard sea water was studied. Crystallization was induced by the degasification of the dissolved carbonic gas. It was shown by XRD and SEM analysis that CaCO3 crystallize under its aragonite polymorph some either the clay concentration or type. It was also found that tested clays inhibited significantly the crystallization of calcium carbonate, especially for concentrations higher than 25 mgL–1. From the fine analyses of the formed solid, it was suggested that the tested clays have an indirect effect on nucleation and growth of aragonite by increasing the Mg ions concentration, strong inhibitor of CaCO3 formation, in the neighbourhood of clay particles where supersaturation is the higher and than crystallization can occur. In addition to its indirect role, kaolinite can interact with aragonite by adsorbing on their faces and blocking growth sites (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this paper, crystal growth of calcium carbonate (CaCO3) in the presence of biomolecules of lotus root was investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy and X‐ray powder diffractometry were used to characterize the products. The results indicate that calcite spherical particles were constructed from small rhombohedral subunits. Similar CaCO3 crystals were also gained when crystal growth of CaCO3 in aqueous solution containing extracts of lotus root was performed, suggesting that the soluble biomolecules of lotus root play a crucial role in directing the formation of hierarchical calcite spherical particles. The possible formation mechanism of the CaCO3 crystals by using lotus root is also discussed, which can be interpreted by particle‐aggregation based non‐classical crystallization laws. The biomolecules of lotus root might induce and control the nucleation and growth of calcium carbonate crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Gel–forming fibers (GF fibers) can serve as nucleation sites to prepare calcium carbonate (CaCO3) because they can adsorb large amounts of Ca2+ due to their porous structure. In this paper, mineralization behavior of CaCO3 on GF fibers in ethanol–water mixed solvents without any additives has been investigated. The results showed that some crystals covered the fibers, while others were embedded in fibers. Twin–sphere based vaterite, zonary and rodlike calcite with large aspect ratio could be prepared successfully. The effect of ethanol content inside GF fibers, concentration of Ca2+ and CO32‐, mineralization time, miscibility between alcohol and water, and temperature were studied. Lastly, a possible mineralization mode was suggested. This work could provide a new method to prepare inorganic/polymer hybrid materials. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Control over crystal morphology of calcium carbonate (CaCO3) was investigated by simply changing the stirring speeds in the process of CaCO3 formation. Scanning electron microscopy (SEM) and powder X‐ray diffraction (XRD) measurements explore the morphology evolution of CaCO3 at varying stirring speeds. As the stirring speeds increase, rhombohedral calcite, spherical vaterite, and monoclinic crystal with coexistence of calcite phase and vaterite phase were formed, suggesting a facile control over calcium carbonate crystallization in constructing crystals with desired morphology. Moreover, almost pure vaterite spherical particles of narrow particle size distribution were formed at optimum stirring speed. Finally, also elucidated in this work is the mechanism investigation into the construction of various crystal forms via this simple route. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Calcium carbonate (CaCO3) was crystallized in xanthan (XC) aqueous solutions. The CaCO3 particles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry analysis (TGA) methods. The concentrations of XC, Ca2+ and CO32? ions and the ratios [Ca2+]/[CO32?] and [Mg2+]/[Ca2+] show evident influence on the aggregation and growth of CaCO3 particles. The presence of Mg2+ ions influences not only the morphology, but also the polymorph of CaCO3.  相似文献   

15.
Sparingly soluble salts precipitation, e.g. calcium carbonate or calcium sulfate, results in pore clogging in rock formations and in the concomitant reduction of the local permeability of oil wells during the oil extraction processes. On the other hand, in situ controlled salt precipitation is desirable in various applications e.g. waterproofing of concrete constructions suffering from leakages, etc. In the present study, calcium carbonate (CaCO3) precipitation in sandbeds was investigated, in the presence of organic solvents simulating the conditions prevalent in oil‐well zones. CaCO3 precipitation was investigated from supersaturated solutions prepared by in‐situ mixing of NaHCO3 and CaCl2.2H2O solutions before the inlet of sandbeds. The solution resulting from the mixing of the two solutions was supersaturated with respect to all calcium carbonate polymorphs. Three types of experiments were performed depending on the supersaturated solutions: a) aqueous solutions b) aqueous supersaturated solutions in contact with sandbeds pre‐saturated with n‐dodecane c) aqueous solutions containing monoethylene glycol (MEG). Results showed that oil–water interfaces enhanced the heterogeneity of the supersaturated solutions and accelerated crystal growth of calcium carbonate at the inlet of the sandbed, resulting in early pore clogging and limitation of local permeability. Maximum sandbed consolidation was obtained with the solutions containing MEG.  相似文献   

16.
In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.  相似文献   

17.
The dumbbell‐like calcium carbonate (CaCO3) crystals were synthesized in the presence of trisodium citrate. Different morphologies were obtained by changing the reaction temperature and the trisodium citrate concentration. The obtained samples were characterized by means of X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the morphology of CaCO3 crystals was markedly affected by the reaction temperature and citrate anion concentration. The possible growth mechanism of CaCO3 crystals was proposed. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Lijun Dai 《Journal of Non》2008,354(17):1845-1854
Amorphous calcium carbonate (ACC) has been of keen interest in the biomimetics field because of recent evidence which suggests it plays an important role in biomineralization. In this report, an in vitro model system is used to examine the composition of an amorphous phase generated by polyanionic process-directing agents, such as the sodium salt of polyaspartic acid (Pasp), which is considered a simple mimic to the proteins associated with calcific biominerals. This additive leads to the formation of a highly hydrated, amorphous mineral precursor to calcium carbonate (CaCO3), referred to as a polymer-induced liquid-precursor (PILP) phase. The precursor phase was collected by centrifugation, and the quantity of precursor phase and the water content were determined. It was found that Pasp promotes and stabilizes the amorphous precursor, which has a composition that steadily changes with time as the polymer and water are excluded. Elemental analysis was used to investigate the role of the polymer in influencing the calcium/carbonate ratio, the water content, and the amount of precursor phase. Raman and ATR-FTIR spectroscopy were used to compare the compositions of the precursor phases generated with different polymeric concentrations. The role of Pasp in generating and stabilizing the ACC precursor phase is discussed.  相似文献   

19.
To investigate the mechanisms of deterioration of historical glasses, under natural evolution, some early medieval glasses from the archaeological site of the Monselice's hill have been analysed. By an archaeological approach, developed at the Dipartimento di Scienze dell'Antichità, University of Padova, the glasses were dated between the VI and the beginning of the VII century and they were ascribed to the same artist or school. By a geological approach, developed at the Dipartimento di Mineralogia e Petrologia, University of Padova, it was found that some pieces of glasses, from the same archaeological site, were made of silica, rich in sodium and calcium, with iron and manganese. The composition was analogous the one of glasses produced during Roman empire, using `natron' (Na2CO3·NaHCO3·2H2O) as melting agent and glasses produced during medieval age, in the Mediterranean basin, using plant ash like `Salsola Kali' as melting agent. It was also found that there was a surface layer, with a special lamellar structure, easy to remove. The surface layer was found poor in alkali and alkaline-earth elements. By surface and microscopic analyses (optical microscopy, SEM-EDS, microRaman, XPS, SIMS and Mössbauer) it has been found that all the samples have a composition rich in silica, sodium and calcium except one that, unexpectedly, was rich in potassium and poorer in sodium. This sample, as composition, seems just like medieval glasses produced north of the Alps, using plant ash like ferns as melting agent. In all the samples the surface layers have less alkaline elements and the depletion goes to ten μm of depth. The extreme consequence of this depletion is the formation, in some samples, of an alteration layer, easy to remove, that the XPS analyses tell us it is made of very hydrated silica. The surface layers show a little accumulation of calcium. The calcium ion is also present in some birefringent crystal aggregates immersed in the glass that, in some samples, are around one mm large. These aggregates have a circular shape, with a nucleation centre in them. By microRaman spectroscopy it was found that the crystal aggregates are made of vateritic and calcitic calcium carbonate. By Mössbauer spectroscopy it was found that in the flat yellow coloured glasses, richer in iron, the Fe(III) species predominates. Instead in the pale green ones, poorer in iron, the Fe(II) prevails.  相似文献   

20.
Crystalline calcium carbonate with randomly dispersed porous structure was prepared through co‐ crystallization with calcium peroxide and the following template elimination by a post heating treatment and washing with water. The artificial CaCO3 possess abundant macro‐mesopores structures and high surface area. This approach may open a new general route for the preparation of crystals with high porosity and structure specialty. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号