首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Let A denote an n×n matrix with all its elements real and non-negative, and let ri be the sum of the elements in the ith row of A, i=1,…,n. Let B=A?D(r1,…,rn), where D(r1,…,rn) is the diagonal matrix with ri at the position (i,i). Then it is proved that A is irreducible if and only if rank B=n?1 and the null space of BT contains a vector d whose entries are all non-null.  相似文献   

3.
Let A and B be n?×?n matrices over an algebraically closed field F. The pair ( A,?B ) is said to be spectrally complete if, for every sequence c1,…,cn ∈F such that det (AB)=c1 ,…,cn , there exist matrices A′,B,′∈F,n×n similar to A,?B, respectively, such that A′B′ has eigenvalues c1,…,cn . In this article, we describe the spectrally complete pairs. Assuming that A and B are nonsingular, the possible eigenvalues of A′B′ when A′ and B′ run over the sets of the matrices similar to A and B, respectively, were described in a previous article.  相似文献   

4.
Let {B1,…,Bn} be a set of n rank one n×n row stochastic matrices. The next two statements are equivalent: (1) If A is an n×n nonnegative matrix, then 1 is an eigenvalue ofBkA for each k=1,…,n if and only if A is row stochastic. (2) The n×n row stochastic matrix S whose kth row is a row of Bk for k=1,…,n is nonsingular. For any set {B1, B2,…, Bp} of fewer than n row stochastic matrices of order n×n and of any rank, there exists a nonnegative n×n matrix A which is not row stochastic such that 1 is eigenvalue of every BkA, k=1,…,p.  相似文献   

5.
Let BD denote that Drazin inverse of the n×n complex matrix B. Define the core-rank of B as rank (Bi(B)) where i(B) is the index of B. Let j = 1,2,…, and Aj and A be square matrices such that Ai converges to A with respect to some norm. The main result of this paper is that AjD converges to AD if and only if there exist a j0 such that core-rank Aj=core-rankA for j ? j0.  相似文献   

6.
Let A be an n?×?n real matrix. A is called {0,1}-cp if it can be factorized as A?=?BB T with bij =0 or 1. The smallest possible number of columns of B in such a factorization is called the {0,1}-rank of A. A {0,1}-cp matrix A is called minimal if for every nonzero nonnegative n?×?n diagonal matrix D, A-D is not {0,1}-cp, and r-uniform if it can be factorized as A=BB T, where B is a (0,?1) matrix with r 1s in each column. In this article, we first present a necessary condition for a nonsingular matrix to be {0,1}-cp. Then we characterize r-uniform {0,1}-cp matrices. We also obtain some necessary conditions and sufficient conditions for a matrix to be minimal {0,1}-cp, and present some bounds for {0,1}-ranks.  相似文献   

7.
Let A and B be n×n matrices over a field F, and c 1,…,cn F. We give a sufficient condition for the existence of matrices A' and B' similar to A and B, respectively, such that A' + B' has eigenvalues c 1,…,cn .  相似文献   

8.
It is well known that the ideal classes of an order Z[μ], generated over Z by the integral algebraic number μ, are in a bijective correspondence with certain matrix classes, that is, classes of unimodularly equivalent matrices with rational integer coefficients. If the degree of μ is ?3, we construct explicitly a particularly simple ideal matrix for an ideal which is a product of different prime ideals of degree 1. We obtain the following special n×n matrix (cij) in the matrix class corresponding to the ideal class of our ideal: ci+1,i=1(i=1,…,n?2); cij=0(?i?n, 1?j?n? 2, and ij+1); cnj=0(j)=2,…,n?1). The remaining coefficients are given as explicit polynomials in an integer z which depends on the ideal. It is shown that the matrix class of every regular ideal class of Z[μ] contains a special matrix of this kind.  相似文献   

9.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

10.
A lower (upper) bound is given for the distribution of each dj, j = k + 1, …, p (j = 1, …, s), the jth latent root of AB?1, where A and B are independent noncentral and central Wishart matrices having Wp(q, Σ; Ω) with rank (Ω) ≤ k = p ? s and Wp(n, Σ), respectively. Similar bound are also given for the distributions of noncentral means and canonical correlations. The results are applied to obtain lower bounds for the null distributions of some multivariate test statistics in Tintner's model, MANOVA and canonical analysis.  相似文献   

11.
Let A be a rectangular matrix of complex numbers whose rows are partitioned into r arbitrary blocks:
The Moore-Penrose inverses of each of these blocks are used to form the matrix B = (A1+,…, Ar+). It is shown that 0 ? det (AB) ? 1. This is a generalized version of Hadamard's inequality.  相似文献   

12.
Let Fm×nq denote the vector space of all m×n matrices over the finite field Fq of order q, and let B=(A1,A2,…,Amn) denote an ordered basis for Fm×nq. If the rank of Ai is ri,i=1,2,…,mn, then B is said to have rank (r1,r2,…,rmn), and the number of ordered bases of Fmxnq with rank (r1,r2,…,rmn is denoted by Nq(r1, r2,…,rmn). This paper determines formulas for the numbers Nq(r1,r2,…,rmn) for the case m=n=2, q arbitrary, and while some of the techniques of the paper extend to arbitrary m and n, the general formulas for the numbers Nq(r1,r2,…,rmn) seem quite complicated and remain unknown. An idea on a possible computer attack which may be feasible for low values of m and n is also discussed.  相似文献   

13.
Let A be an n×s matrix of rank r, B be an n×t matrix of rank ρ?r, and X be an s×t matrix. This paper discusses conditions on the matrices A and B so that the matric equation AX=B will have solutions for the matrix X.  相似文献   

14.
Let A,B be n×n matrices with entries in an algebraically closed field F of characteristic zero, and let C=AB?BA. It is shown that if C has rank two and AiBjCk is nilpotent for 0?i, j?n?1, 1?k?2, then A, B are simultaneously triangularizable over F. An example is given to show that this result is in some sense best possible.  相似文献   

15.
Let A = (aij) be an n × m matrix with aijK, a field of characteristic not 2, where Σi=1naij2 = e, 1 ≤ jm, and Σi=1naijaij = 0 for jj′. The question then is when is it possible to extend A, by adding columns, to obtain a matrix with orthogonal columns of the same norm. The question is answered for n ? 7 ≤ mn as well as for more general cases. Complete solutions are given for global and local fields, the answer depending on what congruence class modulo 4 n belongs to and how few squares are needed to sum to e.  相似文献   

16.
The scrambling index of an n × n primitive Boolean matrix A is the smallest positive integer k such that A k (A T) k = J, where A T denotes the transpose of A and J denotes the n×n all ones matrix. For an m×n Boolean matrix M, its Boolean rank b(M) is the smallest positive integer b such that M = AB for some m × b Boolean matrix A and b×n Boolean matrix B. In 2009, M. Akelbek, S. Fital, and J. Shen gave an upper bound on the scrambling index of an n×n primitive matrix M in terms of its Boolean rank b(M), and they also characterized all primitive matrices that achieve the upper bound. In this paper, we characterize primitive Boolean matrices that achieve the second largest scrambling index in terms of their Boolean rank.  相似文献   

17.
It is shown that the real algebra generated by a pair A,B of n × n (complex) matrices consists entirely of normal matrices if and only if A,B,AB,A + B and A + AB are normal.  相似文献   

18.
Given an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q), expand each entry of M into a t×1 vector of coordinates of this entry relative to A to obtain an mt×n matrix M1 with entries from the field K. Let r=rank(M) and r1=rank(M1). We show that r?r1?min{rt,n}, and we determine the number b(m,n,r,r1,q,t) of m×n matrices M of rank r over GF(qt) with associated mt×n matrix M1 of rank r1 over GF (q).  相似文献   

19.
Let F be a field and let {d 1,…,dk } be a set of independent indeterminates over F. Let A(d 1,…,dk ) be an n × n matrix each of whose entries is an element of F or a sum of an element of F and one of the indeterminates in {d 1,…,dk }. We assume that no d 1 appears twice in A(d 1,…,dk ). We show that if det A(d 1,…,dk ) = 0 then A(d 1,…,dk ) must contain an r × s submatrix B, with entries in F, so that r + s = n + p and rank B ? p ? 1: for some positive integer p.  相似文献   

20.
An n×n real matrix A is called a bisymmetric matrix if A=AT and A=SnASn, where Sn is an n×n reverse unit matrix. This paper is mainly concerned with solving the following two problems: Problem I Given n×m real matrices X and B, and an r×r real symmetric matrix A0, find an n×n bisymmetric matrix A such that where A([1: r]) is a r×r leading principal submatrix of the matrix A. Problem II Given an n×n real matrix A*, find an n×n matrix  in SE such that where ∥·∥ is Frobenius norm, and SE is the solution set of Problem I. The necessary and sufficient conditions for the existence of and the expressions for the general solutions of Problem I are given. The explicit solution, a numerical algorithm and a numerical example to Problem II are provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号