首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Cd1‐xSnxS thin films were successfully deposited on suitably cleaned glass substrate by chemical bath deposition method at 74 °C. Hydrated Stannous Chloride (SnCl2.2H2O) in aqueous solution was added to the CdS growing solution in different proportions. The experimental results indicate, a successful doping for lower concentration of Sn, saturation for intermediate doping levels, and a degradation of the doping process for higher concentration of Sn. Indirect (X‐ray diffraction) and Direct (Scanning electron microscopy) measurements were performed to characterize the growth and the nature of crystallinity of the different Cd1‐xSnxS films. The effect of annealing on the crystal structure and morphology of the deposited films has also been discussed. The X‐ray diffraction spectra show that the thin films are polycrystalline and have both cubic and hexagonal structure. The Interplanar spacing, lattice constant, grain size, strain, and dislocation density were calculated for as‐deposited and annealed films. The grain size was found to decrease from 5 nm to 0.89 nm with doping concentration of Sn. The grain size further decreased due to annealing at 400 °C. SEM studies show layered growth and long needle like structures along with some voids. After annealing the densification and smaller size of the particles was also observed. The optical absorption spectra show shifting of absorption peaks towards lower wavelength side (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Dislocation structure of GexSi1?x films (x=0.4?0.8) grown by molecular-beam epitaxy on Si(001) substrates was studied by means of transmission electron microscopy. It was found that the density of edge MDs formed at the early stage of plastic strain relaxation in the films could exceed the density of 60° MDs. In our previous publications, a predominant mechanism underlying the early formation of edge misfit dislocations (MD) in GexSi1?x/Si films with x>0.4 was identified; this mechanism involves the following processes. A 60° glissile MD provokes nucleation of a complementary 60° MD gliding on a mirror-like tilted plane (111). A new edge MD forms as a result of interaction of the two complementary 60° MDs, and the length of the newly formed edge MD can then be increased following the motion of the “arms” of the complementary 60° MDs. Based on this scenario of the edge MD generation process, we have calculated the critical thickness of insertion of an edge MD into GeSi layers of different compositions using the force balance model. The obtained values were found to be more than twice lower than the similar values for 60° MDs. This result suggests that a promising strategy towards obtaining dislocation arrays dominated by 90° dislocations in MBE-grown GexSi1?x/Si films can be implemented through preliminary growth on the substrate of a thin, slightly relaxed buffer layer with 60° MDs present in this layer. The dislocated buffer layer, acting as a source of threading dislocations, promotes the strain relaxation in the main growing film through nucleation of edge MDs in the film/buffer interface. It was shown that in the presence of threading dislocations penetrating from the relaxed buffer into the film nucleation of edge MDs in the stressed film can be initiated even if the film thickness remains small in comparison with the critical thickness for insertion of 60° MDs. Examples of such unusual MD generation processes are found in the literature.  相似文献   

3.
The article presents a study for the evolution of growth interface in crystal growth by Liquid Phase Diffusion (LPD). Specific LPD experiments were designed to grow compositionally graded, germanium‐rich SixGe1‐x single crystals of 25 mm in diameter with various thicknesses. Measured interface shapes show the evolution of the growth interface. Silicon compositions were measured by the Energy Dispersive X‐ray analysis (EDX) in the growth and radial directions. The study shows the feasibility of extracting the desired seeds of uniform composition from LPD grown crystals, for subsequent use in other epitaxial growth processes. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

4.
Zirconium‐doped ceria hollow slightly‐truncated nano‐octahedrons (HTNOs) (Ce1‐xZrxO2) were synthesized by a one‐pot, facile hydrothermal method. The morphology and crystalline structure were characterized with powder X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and the high resolution transmission electron microscopy (HRTEM). The composition and chemical valence on the surface of the as‐prepared Ce1‐xZrxO2 powders were detected by X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS). The surface area and pore size distribution of as‐obtained Zr‐doped ceria HTNOs were measured by N2 adsorption‐desorption measurement. Mechanisms for the growth of Zr‐doped ceria HTNOs are proposed as both oriented attachment and Ostwald ripening process and the formation of the hollow structure is strongly dependent on the addition of Zr4+ ions. Furthermore, the as‐obtained Zr‐doped ceria HTNOs revealed superior catalytic activity and thermal stability toward CO oxidation compared to pure ceria. It may provide a new path for the fabrication of inorganic hollow structures on introducing alien metal ions.  相似文献   

5.
Transmission electron microscopy (TEM) studies of defects in AlxGa1?xN layers with various Al mole fractions (x=0.2, 0.4) and polarities were carried out. The samples were grown by ammonia molecular beam epitaxy on sapphire substrates and consisted of low-temperature AlN (LT-AlN) and high-temperature AlN (HT-AlN) buffer layers, a complex AlN/AlGaN superlattice (SL) and an AlxGa1?xN layer (x=0.2, 0.4). It was observed that at the first growth stages a very high density of dislocations is introduced in both Al-polar and N-polar structures. Then, at the interface of the LT-AlN and HT-AlN layers half-loops are formed and the dislocation density considerably decreases in Al-polar structures, whereas in the N-polar structures such a behavior was not observed.The AlN/AlGaN superlattice efficiently promotes the bend and annihilation of threading dislocations and respectively the decrease of the dislocation density in the upper AlxGa1?xN layer with both polarities.The lattice relaxation of metal-polar Al0.2Ga0.8N was observed, while N-polar Al0.2Ga0.8N did not relax. The dislocation densities in the N-polar Al0.2Ga0.8N and Al0.4Ga0.6N layers were 5.5×109 cm?2 and 9×109 cm?2, respectively, and in metal-polar Al0.2Ga0.8N and Al0.4Ga0.6N layers these were 1×1010 cm?2 and 6×109 cm?2, respectively.Moreover, from TEM images the presence of inversion domains (IDs) in N-polar structures has been observed. The widths of IDs varied from 10 to 30 nm. Some of the IDs widen during the growth of the AlN buffer layers. The IDs formed hills on the surface of the N-polar structures.  相似文献   

6.
The crystal quality of GaN thin film on silicon using GaN/AlN superlattice structures was investigated. The growth was carried out on Si(111) for GaN(0001) in a metal‐organic vapor phase epitaxy system. Various GaN/AlN superlattice intermediate layers have been designed to decrease the dislocation density. The results showed that the etch pit density could be greatly reduced by one order of magnitude. Cross‐sectional transmission electron microscopy (XTEM) study confirmed the efficiency of GaN/AlN superlattice in blocking threading dislocation propagation in GaN crystal. The design of nine period GaN/AlN (20nm/2nm) superlattice has been evidenced to be effective in reducing the dislocation density and improving the crystal quality. In addition, the dislocation bending in GaN/AlN interface and dislocation merging is investigated. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The interest of Si1–xGexO2 single crystals with alpha‐quartz structure is connected to improvement of electromechanical coefficients and rise of α – β phase transition of quartz one. Growth of an α‐SixGe1–xO2 crystal was realized by a hydrothermal method of temperature gradient in autoclaves, made from Cr–Ni alloys. Nutrient material was prepared from synthetic quartz as crashed rods and placed in the bottom of autoclaves. There was loaded GeO2 powder additive in proportions to quartz nutrient. Single crystals were investigated by electron microprobe analysis, X‐ray diffraction and atomic force microscopy. The most important result, which was obtained during the investigations, is an experimental proof of growth of α‐SixGe1–xO2 single crystals under the hydrothermal conditions. The present results thus open the possibility to tune the piezoelectric properties of these materials by varying the chemical composition. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Comparative analysis of the specific features of the formation of a dislocation structure in the single-layer epitaxial heterostructures Si1?xGex/Si and Ge1?ySiy/Ge is performed. It is ascertained that, at a relatively low lattice mismatch between an epitaxial layer and a substrate, the sign of misfit strain at the interface significantly affects the processes of defect formation. The most probable reasons for the observed phenomena are analyzed with allowance for the specific features of the state of the ensemble of intrinsic point defects in epitaxial layers subjected to elastic strains of a different sign.  相似文献   

9.
Single crystals of Zn1?xCrxTe were grown by vapour phase growth method in the composition range of 0?x?0.005. Chemical analysis, surface morphology, structural and microhardness studies were carried out by EDAX, SEM, XRD and Vicker's indentation techniques, respectively. Microscopic variations between the target and actual compositions were noticed. Morphology studies revealed that dislocation aided growth is active in the present crystals. XRD studies showed that samples of all compositions crystallized in zinc blende structure, and the lattice parameters varied linearly with x following Vegard's law. Vicker's hardness (Hv) decreased exponentially with x.  相似文献   

10.
The dislocation structures induced by low‐plastic‐strain‐amplitude cyclic deformation of [111] multiple‐slip‐oriented Cu single crystals were investigated using electron channelling contrast (ECC) technique in scanning electron microscopy (SEM). At a low plastic strain amplitude γpl of 8.8 × 10–5, the saturated dislocation structure is mainly composed of labyrinth‐like vein structure (or irregular labyrinths), and the cyclic hardening behavior at such a low γpl is interpreted as being the result of dislocation multiplication by a Frank‐Read mechanism. As γpl increases to 4.0 × 10–4, the unsaturated dislocation structure exhibits two kinds of distinctive configurations, i.e., dislocation walls and misoriented cells. Interestingly, these misoriented dislocation cells are strictly aligned along the primary slip plane (111), constituting a unique persistent slip band (PSB) structure. Here, these cells are thus called PSB cells. In addition, there is a locally distinctive region comprising some cells having a recrystallization‐like feature in the whole structure of PSB cells. The formation of the structure of PSB cells is discussed. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Thermal conditions and rotation rate were examined experimentally for obtaining a flat interface growth of high melting‐point oxide (Tb3ScxAl5‐xO12 ‐ TSAG) by the Czochralski method. The critical crystal rotation rate can be significantly reduced, of about twice at low and very low temperature gradients comparing to medium temperature gradients in the melt and surroundings of the crystal. The interface shape of TSAG crystals is not very sensitive on crystal rotation rate at small rotations and becomes very sensitive at higher rotations, when the interface transition takes place. The range of crystal rotation rates during the interface transition from convex to concave decreases with a decrease of temperature gradients. At low temperature gradients interface inversion crystals takes place in very narrow range of rotation rates, which does not allow one to growth such crystals with the flat interface. Even changing crystal rotation rate during the growth process in a suitable manner did not prevent the interface inversion from convex to concave and thus did not allow to obtain and maintain the flat interface.  相似文献   

12.
The regularities of the defect formation in Si1−x Gex/Si heterostructures (x = 0.15 and 0.30), consisting of a low-temperature Si buffer layer and a SiGe solid solution, during their growth and subsequent annealings at temperatures 550–650°C are investigated by the methods of optical and transmission electron microscopy and X-ray diffraction. It is shown that the misfit-strain relaxation by plastic deformation under the conditions studied occurs most intensively in heterostructures with low-temperature SiGe buffer layers. The maximum degree of misfit-strain relaxation (no higher than 45%) is observed in the heterostructures with x = 0.30 after annealing at 650°C. The results obtained are explained by the effect of the nature and concentration of dislocation-nucleation centers, existing in low-temperature buffer layers, on the characteristics of the formation of a dislocation structure in the heterostructures under consideration.  相似文献   

13.
Cd1‐xMnxTe (x =0.2, CdMnTe) crystal was grown by the vertical Bridgman method, which exhibits a pure zincblende structure in the whole ingot. The major defect, twins, which is fatal to CdMnTe crystal, was analyzed with scanning electron microscopy (SEM), X‐ray energy disperse spectroscopy (XEDS) and optic microscopy on the chemical etching surface. The twins observed in the as‐grown ingot are mainly lamellar ones, which lie on the {111} faces from the first‐to‐freeze region of the ingot and run parallel to the growth axis of the ingot. Coherent twins with {115}t‐{111}h orientations when indexed with respect to both the twin and host orientations, are often found to be terminated by {110}t‐{114}h lateral twins. Te inclusions with about 20 μm in width are observed to preferentially decorate the lamellar twin boundaries. The origin of the twins, relating to the growth twin and the phase transformation twin, is also discussed in this paper. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The V–VI group narrow band gap compounds are known to have important photoconductivity and thermoelectric properties. Among these, Bi2Te3 is the most potential material for thermoelectric devices having a direct band gap of 0.16 eV. There has been ample study reported on crystal growth and polycrystalline thin films of both pure and indium doped Bi2Te3 pertaining to its basic semiconducting, optoelectronic and thermoelectric properties. It has been shown that on exceeding certain limiting concentration of indium in Bi2Te3, the conductivity changes from p-type to n-type. However, there is hardly any work reported in literature on crystal growth, dislocation etching and optical band gap of InxBi2?xTe3 (x=0.1, 0.2, 0.5) single crystals. The authors have grown their single crystals using the zone melting method. The freezing interface temperature gradient of 70 °C/ cm?1 has been found to yield the best quality crystals obtainable at the growth rate of 0.4 cm/h. The as-grown crystals have been observed to exhibit certain typical features on their top free surfaces. The crystals have been characterized using XRD technique. A chemical dislocation etchant has been used for estimating perfection in terms of dislocation density in the crystals. The optical absorption was measured in the wave number range 500 to 4000 cm?1. The transitions in all the cases were observed to be allowed direct type. The detailed results are reported in the paper.  相似文献   

15.
Based on SnS (Herzenbergite) – SnPbS2 (Teallite) mixed crystals with orthorhombic layer structures, thin films and lawns of Sn1‐xPbxS nanorods were produced using hot wall vacuum deposition method (HWVD). The lawn was formed onto the surface of an underlying thin Sn1‐xPbxS film which is build by differently oriented blocks. The density of rods arranged like a lawn depends on the metal ratio and substrate temperature. X‐ray and TEM analysis of the epitaxial material showed preferential (001) orientation perpendicular to the surface of the glass substrate. The roughness of the films measured by atomic force microscopy was in the range of Rq = 49.5–86.3 nm depending on lead concentration The rods were about 500 nm high and 300 nm in diameter. As revealed by TEM‐EDX experiments the droplet at the tip of rods consists of tin. Therefore it is assumed the rods grew via a self‐consuming vapor–liquid–solid (VLS) mechanism. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We report the synthesis of La doped MgB2 superconductors with nominal compositions Mg1‐xLaxB2 (with x = 0.01, 0.03, 0.05, 0.07) by solid state reaction at ambient pressure. A special encapsulation technique has been used by us to prepare high quality superconducting MgB2 samples. The bulk polycrystalline samples possess superconducting transition temperature Tc(R=0) ranging between 36‐39 K. It has been found that transport critical current density Jc of the samples change significantly with the doping level of La. A high transport (Jc) value ∼1.9 x 103 A/cm2 at 15 K has been achieved for Mg0.97La0.03B2 sample. The XRD and TEM investigations indicate that the samples prepared by encapsulation method are devoid of MgO, which is generally found when synthesis of MgB2 is done through sintering of Mg and B powders. The detailed microstructural investigations of Mg0.97La0.03B2 specimens by transmission electron microscopy (TEM) reveal the presence of partial dislocation network, moiré fringes and superlattice structure in the as synthesized samples. The higher transport critical current density observed in Mg0.97La0.03B2 superconductor has been attributed to the partial dislocations which are capable of providing pinning centres. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The secondary extinction theory of Zachariasen for mosaic crystals as well as the formalism of Becker&Coppens have been used for substructure analysis (lattice disorientations, block size, density of excess dislocations, etc.) in crystals with inhomogeniously distributed dislocations in the Bragg case of diffraction geometry. In the case of large crystals DS ≫ Λhkl the mean total density ρD of randomly distributed dislocations was also estimated taking into account additionally the primary X‐ ray extinction treatment. In this connection two cases are considered: I) pure secondary extinction related to arrangement of dislocation walls and II) mixed extinction in crystals with large subgrains related to randomly distributed dislocations and arrangement of dislocation walls. In order to check the considerations, the experimental and calculated data were compared for Be (model I) and Cu (model II) single crystals. The weakly distorted single crystals of Be and Cu were experimentally investigated in the Bragg case of diffraction geometry using Cu Kα1 radiation by means of double crystal diffractometer. A new experimental procedure was proposed. Using alternative technique for substructure analysis (for instance EBSD) the reliability of analysis based on extinction phenomenon in weakly distorted single crystals has been checked. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We have designed a double ellipsoid mirror furnace for floating‐zone crystal growth using lamps with rectangular filaments. Its thermal characteristics were studied using an alumina tube for several system configurations. A simple comparison with a commercial furnace that used cylinder lamps for the heating profile was also conducted. By adjusting lamp orientation and positions, one could modify heating profiles easily. In general, the thermal characteristics of the furnace were consistent with the model's prediction [J. Crystal Growth 173 (1997) 561]. The effects of growth chamber and heat pipe were further illustrated. Furthermore, a suitable system configuration leading to better heating uniformity and lower thermal gradients near the growth interface was found for the floating‐zone growth of SrxBa1‐xTiO3 single crystals.  相似文献   

19.
Plastic deformation in a single-crystal layer of the In0.12Ga0.88As/(111)InP solid solution is identified by the methods of X-ray diffractometry (XRD) and the double-crystal pseudorocking curves (DCPRC). X-ray topographs showed the generation of three intersecting systems of straight dislocations in the layer. In a one-layer ZnSe/GaAs structure and multilayer ZnSe/ZnSe1 − x Sx/ZnSe/GaAs structures, the elastic and plastic strains were detected by the combined XRD-DCPRC method. The major components of the thermoelastic and plastic-deformation tensors were determined as εxx = εyy = 3.5 × 10−3 and εzz = 2.35 × 10−3. Using these data, the dislocation densities were determined as N d ∼ 2.5 × 108 cm−2 and N d ∼ 3 × 1010 cm−2 for the 7 μm-thick ZnSe and 1 μm-thick InAs layers, respectively. In a superlattice of the AlxGa1 − x As/GaAs/⋯/GaAs-type with a large lattice parameter, the plastic deformation was detected. X-ray topography confirmed that the dislocation density in this superlattice equals ∼105 cm−2. __________ Translated from Kristallografiya, Vol. 45, No. 2, 2000, pp. 326–331. Original Russian Text Copyright ? 2000 by Kuznetsov.  相似文献   

20.
We present the growth optimization and the doping by the metal organic chemical vapor deposition of lattice-matched Al0.82In0.18N bottom optical confinement layers for edge emitting laser diodes. Due to the increasing size and density of V-shaped defects in Al1?xInxN with increasing thickness, we have designed an Al1?xInxN/GaN multilayer structure by optimizing the growth and thickness of the GaN interlayer. The Al1?xInxN and GaN interlayers in the multilayer structure were both doped using the same SiH4 flow, while the Si levels in both layers were found to be significantly different by SIMS. The optimized 8×(Al0.82In0.18N/GaN=54/6 nm) multilayer structures grown on free-standing GaN substrates were characterized by high resolution X-ray diffraction, atomic force microscopy and transmission electron microscopy, along with the in-situ measurements of stress evolution during growth. Finally, lasing was obtained from the UV (394 nm) to blue (436 nm) wavelengths, in electrically injected, edge-emitting, cleaved-facet laser diodes with 480 nm thick Si-doped Al1?xInxN/GaN multilayers as bottom waveguide claddings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号