首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

2.
choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely whenever . A related result for pseudo-random graphs is proved as well. By a special case of this result, the choice number (as well as the chromatic number) of any graph on n vertices with minimum degree at least in which no two distinct vertices have more than common neighbors is at most . Received: October 13, 1997  相似文献   

3.
A clique coloring of a graph is a coloring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colors in such a coloring is the clique chromatic number. In this paper, we study the asymptotic behavior of the clique chromatic number of the random graph ??(n,p) for a wide range of edge‐probabilities p = p(n). We see that the typical clique chromatic number, as a function of the average degree, forms an intriguing step function.  相似文献   

4.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

5.
Consider the following one-player game. The vertices of a random graph on n vertices are revealed to the player one by one. In each step, also all edges connecting the newly revealed vertex to preceding vertices are revealed. The player has a fixed number of colors at her disposal, and has to assign one of these to each vertex immediately. However, she is not allowed to create any monochromatic copy of some fixed graph F in the process.  相似文献   

6.
Given a graph G and an ordering p of its vertices, denote by A(G, p) the number of colors used by the greedy coloring algorithm when applied to G with vertices ordered by p. Let , , Δ be positive constants. It is proved that for each n there is a graph Gn such that the chromatic number of Gn is at most n, but the probability that A(Gn, p) < (1 − )n/log2 n for a randomly chosen ordering p is O(n−Δ).  相似文献   

7.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

8.
With an arbitrary graph G having n vertices and m edges, and with an arbitrary natural number p, we associate in a natural way a polynomial R(x 1,...,x n) with integer coefficients such that the number of colorings of the vertices of the graph G in p colors is equal to p m-n R(0,...,0). Also with an arbitrary maximal planar graph G, we associate several polynomials with integer coefficients such that the number of colorings of the edges of the graph G in 3 colors can be calculated in several ways via the coefficients of each of these polynomials. Bibliography: 2 titles.  相似文献   

9.
For a nontrivial connected graph G, let ${c: V(G)\to {{\mathbb N}}}For a nontrivial connected graph G, let c: V(G)? \mathbb N{c: V(G)\to {{\mathbb N}}} be a vertex coloring of G, where adjacent vertices may be colored the same. For a vertex v of G, let N(v) denote the set of vertices adjacent to v. The color sum σ(v) of v is the sum of the colors of the vertices in N(v). If σ(u) ≠ σ(v) for every two adjacent vertices u and v of G, then c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring of a graph G is called its sigma chromatic number σ(G). The sigma chromatic number of a graph G never exceeds its chromatic number χ(G) and for every pair a, b of positive integers with ab, there exists a connected graph G with σ(G) = a and χ(G) = b. There is a connected graph G of order n with σ(G) = k for every pair k, n of positive integers with kn if and only if kn − 1. Several other results concerning sigma chromatic numbers are presented.  相似文献   

10.
A graph coloring game introduced by Bodlaender (Int J Found Comput Sci 2:133–147, 1991) as coloring construction game is the following. Two players, Alice and Bob, alternately color vertices of a given graph G with a color from a given color set C, so that adjacent vertices receive distinct colors. Alice has the first move. The game ends if no move is possible any more. Alice wins if every vertex of G is colored at the end, otherwise Bob wins. We consider two variants of Bodlaender’s graph coloring game: one (A) in which Alice has the right to have the first move and to miss a turn, the other (B) in which Bob has these rights. These games define the A-game chromatic number resp. the B-game chromatic number of a graph. For such a variant g, a graph G is g-perfect if, for every induced subgraph H of G, the clique number of H equals the g-game chromatic number of H. We determine those graphs for which the game chromatic numbers are 2 and prove that the triangle-free B-perfect graphs are exactly the forests of stars, and the triangle-free A-perfect graphs are exactly the graphs each component of which is a complete bipartite graph or a complete bipartite graph minus one edge or a singleton. From these results we may easily derive the set of triangle-free game-perfect graphs with respect to Bodlaender’s original game. We also determine the B-perfect graphs with clique number 3. As a general result we prove that complements of bipartite graphs are A-perfect.   相似文献   

11.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

12.
The harmonious chromatic number of a graph G is the least number of colors which can be used to color V(G) such that adjacent vertices are colored differently and no two edges have the same color pair on their vertices. Unsolved Problem 17.5 of Graph Coloring Problems by Jensen and Toft asks for the harmonious chromatic number of Tm,n the complete n-ary tree on m levels. Let q be the number of edged of Tm,n and k be the smallest positive integer such that the binomial coefficient C(k, 2) ≥ q. We show that for all sufficiently large m, n, the harmonious chromatic number of Tm,n is at most k + 1, and that many such Tm,n have harmonious chromatic number k.  相似文献   

13.
Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary n-tuples and two vertices are adjacent iff the corresponding n-tuples differ in exactly one position. An edge coloring of a graph H is called rainbow if no two edges of H have the same color. Let f(G,H) be the largest number of colors such that there exists an edge coloring of G with f(G,H) colors such that no subgraph isomorphic to H is rainbow. In this paper we start the investigation of this anti-Ramsey problem by providing bounds on f(Qn,Qk) which are asymptotically tight for k = 2 and by giving some exact results.  相似文献   

14.
For an integer r>0, a conditional(k,r)-coloring of a graph G is a proper k-coloring of the vertices of G such that every vertex of degree at least r in G will be adjacent to vertices with at least r different colors. The smallest integer k for which a graph G has a conditional (k,r)-coloring is the rth order conditional chromatic number χr(G). In this paper, the behavior and bounds of conditional chromatic number of a graph G are investigated.  相似文献   

15.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
Consider the following random process: The vertices of a binomial random graph Gn,p are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number r of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph F in the process. Our first main result is that for any F and r, the threshold function for this problem is given by p0(F,r,n) = n‐1/m*1(F,r), where m*1(F,r) denotes the so‐called online vertex‐Ramsey density of F and r. This parameter is defined via a purely deterministic two‐player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any F and r, the online vertex‐Ramsey density m*1(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial‐time online algorithms that succeed in coloring Gn,p as desired with probability 1 ‐ o(1) for any p(n) = o(n‐1/m*1(F,r)). © 2012 Wiley Periodicals, Inc. Random Struct. Alg. 44, 419–464, 2014  相似文献   

17.
A b‐coloring is a coloring of the vertices of a graph such that each color class contains a vertex that has a neighbor in all other color classes, and the b‐chromatic number of a graph G is the largest integer k such that G admits a b‐coloring with k colors. A graph is b‐perfect if the b‐chromatic number is equal to the chromatic number for every induced subgraph of G. We prove that a graph is b‐perfect if and only if it does not contain as an induced subgraph a member of a certain list of 22 graphs. This entails the existence of a polynomial‐time recognition algorithm and of a polynomial‐time algorithm for coloring exactly the vertices of every b‐perfect graph. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:95–122, 2012  相似文献   

18.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

19.
A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most Δ(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.  相似文献   

20.
In this paper, we study the vertex pursuit game of Cops and Robbers where cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph G is the cop number of G. We present asymptotic results for the game of Cops and Robber played on a random graph G(n,p) for a wide range of p = p(n). It has been shown that the cop number as a function of an average degree forms an intriguing zigzag shape. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号