首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Novel AB2‐type monomers such as 3,5‐bis(4‐methylolphenoxy)benzoic acid ( monomer 1 ), methyl 3,5‐bis(4‐methylolphenoxy) benzoate ( monomer 2 ), and 3,5‐bis(4‐methylolphenoxy)benzoyl chloride ( monomer 3 ) were synthesized. Solution polymerization and melt self‐polycondensation of these monomers yielded hydroxyl‐terminated hyperbranched aromatic poly(ether‐ester)s. The structure of these polymers was established using FTIR and 1H NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 2.0 × 103 to 1.49 × 104 depending on the polymerization techniques and the experimental conditions used. Suitable model compounds that mimic exactly the dendritic, linear, and terminal units present in the hyperbranched polymer were synthesized for the calculation of degree of branching (DB) and the values ranged from 52 to 93%. The thermal stability of the polymers was evaluated by thermogravimetric analysis, which showed no virtual weight loss up to 200 °C. The inherent viscosities of the polymers in DMF ranged from 0.010 to 0.120 dL/g. End‐group modification of the hyperbranched polymer was carried out with phenyl isocyanate, 4‐(decyloxy)benzoic acid and methyl red dye. The end‐capping groups were found to change the thermal properties of the polymers such as Tg. The optical properties of hyperbranched polymer and the dye‐capped hyperbranched polymer were investigated using ultraviolet‐absorption and fluorescence spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5414–5430, 2008  相似文献   

2.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

3.
Hyperbranched poly(ether sulfone)s were prepared by the self‐polycondensation of the novel AB2 monomer, 4‐(3,5‐hydroxyphenoxy)‐4′‐fluorodiphenylsulfone. The high‐molecular‐weight polymers were isolated in good yields. The degree of branching (DB) of the resulting polymers was investigated by the preparation of dendritic and linear model compounds. The DB determined by gated decoupling 13C NMR measurements was in the range 0.17–0.41 and was dependent on the base used for the self‐polycondensation. It was found that cesium fluoride was an effective base to form the polymer having the DB of 0.41. The resulting hyperbranched poly(ether sulfone)s showed good solubility in organic solvents. The solubility and the glass transition temperature of the polymers were influenced by the terminal functional groups. The unique thermal crosslinking phenomenon was observed during the DSC measurements of the hydroxyl‐terminated hyperbranched poly(ether sulfone) under air condition. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
A series of novel hyperbranched poly(ester‐amide)s (HBPEAs) based on neutral α‐amino acids have been synthesized via the “AD + CBB′” couple‐monomer approach. The ABB′ intermediates were stoichiometrically formed through thio‐Michael addition reaction because of reactivity differences between functional groups. Without any purification, in situ self‐polycondensations of the intermediates at elevated temperature in the presence of a catalyst afforded HBPEAs with multihydroxyl end groups. The degrees of branching (DBs) of the HBPEAs were estimated to be 0.40–0.58 and 0.24–0.54 by quantitative 13C NMR with two different calculation methods, respectively, depending on polymerization conditions and structure of monomers. The influences of catalyst, temperature, and intermediate structure on the polymerization process and molecular weights as well as properties of the resultant polymers were investigated. FTIR, NMR, and DEPT‐135 NMR analyses revealed the branched structure of the resultant polymers. The HBPEAs possess moderately high molecular weights with broad distributions, glass transition temperatures in the range of ?25.5 to 36.5 °C, and decomposition temperatures at 10% weight loss under nitrogen and air in the regions of 243.4–289.1 °C and 231.4–265.6 °C, respectively. Among them, those derived from D ,L ‐phenylalanine display the lowest degree of branching, whereas the highest glass transition temperature and the best thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

6.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

7.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

8.
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB2‐type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer‐bearing multihydroxyl end‐groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI–TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of 1H NMR and 13C NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high‐moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [η] and the Mark–Houwink exponent α were remarkably lower compared with their linear analogs, because of their branched nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4309–4321, 2007  相似文献   

9.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

10.
Water‐soluble, biodegradable, and biocompatible poly(ester‐amide) dendrimers with hydroxyl functional groups are synthesized from previously prepared AB2 adduct of 2,2‐bis(hydroxymethyl) propanoic acid (bis‐MPA) and glycine as a repeating unit. Two esterification procedures using different coupling reagent/catalyst systems (DCC/DPTS or EDC/DMAP) are studied with respect to efficiency, ease of products purification, and quality of the final products. Both procedures have their own benefits and drawbacks, depending on dendrimer generation. The synthesized poly(ester‐amide) dendrimers as well as commercially available bis‐MPA dendrimers, poly(ester‐amide) hyperbranched polymer, and poly(vinyl alcohol) are used for preparation of solid dispersions of sulfonylurea antidiabetic drug glimepiride to improve its poor water‐solubility. In vitro dissolution studies show in comparison with pure glimepiride in crystalline or amorphous form, to the same extent improved glimepiride solubility for solid dispersions based on dendritic polymers, but not for poly(vinyl alcohol). The amount of glimepiride complexed with both dendrimer types increases with dendrimer generation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3292–3301  相似文献   

11.
Hyperbranched poly(ether nitrile)s were prepared from a novel AB2 type monomer, 2‐chloro‐4‐(3,5‐dihydroxyphenoxy)benzonitrile, via nucleophilic aromatic substitution. Soluble and low‐viscous hyperbranched polymers with molecular weights upto 233,600 (Mw) were isolated. According to the 1H NMR and GPC data, the unique polymerization behavior was observed, which implies that the weight average molecular weight increased after the number average molecular weight reached plateau region. Model compounds were prepared to characterize the branching structure. Spectroscopic measurements of the model compounds and the resulting polymers, such as 1H, DEPT 13C NMR, and MS, strongly suggest that the ether exchange reaction and cyclization are involved in the propagation reaction. The side reactions would affect the unique polymerization behavior. The resulting polymers showed a good solubility in organic solvents similar to other hyperbranched aromatic polymers. The hydroxy‐terminated polymer was even soluble in basic water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5835–5844, 2009  相似文献   

12.
In this contribution, we present new reduction‐cleavable hyperbranched disulfide bonds‐containing poly(ester triazole)s with limited intramolecular cyclization, which can be synthesized by the Cu(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) of A2 monomer of dipropargyl 3,3′‐dithiobispropionate and B3 monomer of tris(hydroxymethyl)ethane tri(4‐azidobutanoate). The hyperbranched poly(ester triazole)s possess numerous terminal groups and weight‐average molecular weight up to 20,400 g mol?1 with a polydispersity index in the range 1.57–2.17. The CuAAC introduces rigid triazole units into the backbones of hyperbranched poly(ester triazole)s and reduces intramolecular cyclization, which is proved by topological analysis and 1H NMR spectroscopy. The disulfide bonds on backbones endow the reduction‐cleavable feature to the hyperbranched poly(ester triazole)s at the presence of dithiothreitol. It gives a novel and convenient methodology for the synthesis of reduction‐responsive functional polymer with controlled topologies, and the reduction‐cleavable hyperbranched poly(ester triazole)s with limited intramolecular cyclization are expected to possess potential in the application of stimuli‐responsive anticancer drug nanocarriers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2374–2380  相似文献   

13.
A new controllable approach to synthesize hyperbranched poly(siloxysilanes) via hydrosilylation of A2‐ and B′Bx‐type monomers was developed in this work. A2 monomers (dimethylbis(dimethylsiloxy)siloxane and tetramethyldisiloxane), B′Bx monomers (methylvinyldiallylsilane and vinyltriallylsilane), and the resultant hyperbranched poly(siloxysilanes) were well characterized using FTIR, 1H NMR, 13C NMR, 29Si NMR, and SEC/MALLS. The In situ FTIR results indicate that the controllable polymerization can be carried out quickly and the reaction process was obviously performed in two stages. At the first stage, silicon hydride selectively reacts with vinyl silane groups, which produces intermediate structures with one Si? H and two (or three) allyl groups. Consequently, at the second stage, these intermediates act as new AB2 (or AB3) type monomers and continue to be self‐polymerized to generate hyperbranched polymers. By this novel controllable approach, molecular weights and their polydispersity of the resulted hyperbranched poly(siloxysilanes) can be conveniently regulated via adjusting the process parameters, such as feeding ratio of two monomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2708–2720, 2008  相似文献   

14.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

15.
Core‐shell type hyperbranched polymers that are capable of forming unimolecular micelles and reverse micelles in aqueous and hydrocarbon medium, respectively, were synthesized via two approaches, namely AB2 + A‐R and A2 + B3 + A‐R type copolymerizations. In case of micelle‐forming polymers, an AB2 monomer carrying a decamethylene spacer was used along with heptaethylene glycol monomethyl ether (HPEG) as the A‐R type comonomer. One the other hand, for the preparation of reverse micelle‐forming polymers, an AB2 monomer containing an oligo(oxyethylene) spacer was used along with cetyl alcohol as the A‐R type comonomer. The former was readily soluble in water while the latter was soluble in hydrocarbon solvents like hexane. NMR spectral studies confirmed that both the approaches generated highly branched structures wherein about 65–70% of the terminal B groups were capped by the A‐R comonomer. Dye‐uptake measurements revealed that the polymers prepared via the AB2 + A‐R approach exhibited a significantly larger uptake compared with those prepared via the A2 + B3 + A‐R approach. This suggests that the AB2 + A‐R approach generates hyperbranched polymers with better defined core‐shell topology when compared with polymers prepared via the A2 + B3 + A‐R approach, which is in accordance with previous studies that suggest that A2 + B3 approach yields polymers with significantly lower branching levels and consequently less compact structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 80–91, 2009  相似文献   

16.
Three UV‐sensitive, hyperbranched‐poly(siloxysilane)‐based polymeric photoinitiators, bearing an alkyl phenone moiety linked to the surface of the hyperbranched polymer, were synthesized via the hydrosilylation of hyperbranched poly(siloxysilane) and modified UV‐sensitive compounds. Hyperbranched poly(siloxysilane) was prepared via the polyhydrosilylation of the AB2‐type monomer methylvinyldichlorosilane. The chemical structures of the polymeric photoinitiators were characterized with 1H, 13C, and 29Si NMR, elemental analysis, Fourier transform infrared, differential scanning calorimetry, UV spectrophotometry, and thermogravimetric analysis. The UV‐curing behaviors of the blends of the hyperbranched polymeric photoinitiators with UV‐curable epoxy acrylate (EA) resin were determined by Fourier transform infrared, and the results showed that the initiation efficiency of the polymeric photoinitiators was excellent and that the thermostability of the EA/polymeric photoinitiator curing systems was higher than that of the EA/photoinitiators. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3261–3270, 2006  相似文献   

17.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

18.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

19.
Two UV‐curable hyperbranched poly(siloxysilane)s ( I and III ) containing vinyl and allyl end groups were synthesized via polyhydrosilylation with methylbis(methylethylvinylsiloxy)silane and methylbis(dimethylallylsiloxy)silane monomers. A cationic UV‐curable hyperbranched polymer ( II‐Ep ) with epoxy end groups was prepared via the hydrosilylation of hyperbranched polymer II with Si? H terminated groups and glycidyl methacrylate, and II was also obtained via the polyhydrosilylation of AB2‐type monomer methylvinylbis(methylethylsiloxy)silane. All hydrosilylation reactions were catalyzed by Pt/C or chloroplatinic acid. Three AB2‐type monomers were synthesized via the hydrolysis of functional chlorosilane, which was prepared with Grignard reagents and dichlorosilane. The molecular structures of the polymers were characterized with 1H NMR, Fourier transform infrared, and gel permeation chromatography, and the UV‐curing behaviors of the polymers under different atmospheres and with different photoaccelerators were also investigated. The thermostability of uncured and cured polymers was examined with thermogravimetric analysis, and the data indicated that the orders of the onset decomposition temperatures for the cured polymers and the residue weights were as follows: III (380 °C) > I (320 °C) > II‐Ep (280 °C) and I (70.4%) > III (64.1%) > II‐Ep (60.9%), respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1883–1894, 2005  相似文献   

20.
Summary: Novel hyperbranched poly([1,2,3]‐triazole)s were synthesized from several AB2 monomers by a 1,3‐dipolar cycloaddition reaction. The compound 3,5‐bis(propargyloxy)benzyl azide was polymerized thermally at room temperature leading to 1,4‐ and 1,5‐disubstituted poly([1,2,3]‐triazole) and catalytically leading only to the 1,4‐disubstituted poly([1,2,3]‐triazole). Only the thermal reaction led to fully soluble products. The AB2 monomers containing an internal alkyne A unit could be autopolymerized thermally under mild reaction conditions leading to soluble, high‐molecular‐weight hyperbranched poly([1,2,3] triazole)s. All products were characterized by detailed NMR investigations.

Synthesis route for polymers 8a and 8b .  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号